首页> 外文期刊>Neurocomputing >A neural network-based approach for solving quantized discrete-time H_∞ optimal control with input constraint over finite-horizon
【24h】

A neural network-based approach for solving quantized discrete-time H_∞ optimal control with input constraint over finite-horizon

机译:基于神经网络的有限水平输入约束下的离散离散H_∞最优控制的求解方法

获取原文
获取原文并翻译 | 示例

摘要

In this paper, an online neural network (NN) approach for solving H-infinity optimal control problem is proposed for unknown affine nonlinear discrete-time systems with input quantization over finite-horizon. Different from value and policy iteration of traditional approximation dynamic programming (ADP) technology which always requires adequate number of iterations and more than one iteration loops to guarantee stability of the controlled systems and convergence of system states and control laws, an online NN-based finite-horizon H-infinity constrained-input optimal control method is presented using actor-criticdisturbance structure which can be applied as time goes forward. The terminal cost function has been considered, though the value of system state converges to zero in the regulation problem over finitehorizon. Additionally, an input quantization has been implemented to eliminate the quantization error by using the dynamic quantizer in the control process. Moreover, an NN identification strategy is presented to obviate the dependance of the system input dynamics. The stability analysis of the proposed control algorithm is provided by using Lyapunov stability theorem. Finally, a simulation example is given to verify the feasibility and effectiveness of designed control algorithm. (C) 2019 Elsevier B.V. All rights reserved.
机译:本文针对具有有限水平输入量化的未知仿射非线性离散时间系统,提出了一种求解H-无限最优控制问题的在线神经网络方法。与传统的逼近动态规划(ADP)技术的价值和策略迭代不同,传统的近似动态编程(ADP)技术始终需要足够的迭代次数和一个以上的迭代循环,以确保受控系统的稳定性以及系统状态和控制律的收敛性,这是一种基于NN的在线有限元方法提出了一种基于actor-critic干扰结构的水平H-无穷约束输入最优控制方法,该结构可以随着时间的流逝而应用。尽管在有限水平上的调节问题中系统状态的值收敛到零,但是已经考虑了终端成本函数。另外,通过在控制过程中使用动态量化器,已经实现了输入量化以消除量化误差。此外,提出了一种神经网络识别策略来消除系统输入动力学的依赖性。利用Lyapunov稳定性定理对提出的控制算法进行了稳定性分析。最后,通过仿真实例验证了所设计控制算法的可行性和有效性。 (C)2019 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号