首页> 外文期刊>Systems Science >ARMA MODEL ORDER ESTIMATION OF NON-GAUSSIAN PROCESS USING THE DETERMINANT OF SUB-MATRICES OF A THIRD ORDER CUMULANTS COVARIANCE MATRIX
【24h】

ARMA MODEL ORDER ESTIMATION OF NON-GAUSSIAN PROCESS USING THE DETERMINANT OF SUB-MATRICES OF A THIRD ORDER CUMULANTS COVARIANCE MATRIX

机译:基于三阶累积量协方差矩阵的子矩阵确定子的非高斯过程的Arma模型阶数估计

获取原文
获取原文并翻译 | 示例

摘要

This article addresses the problem of model order estimation of an autoregressive moving average (ARMA) system from only third order cumulants of the output noisy observations of the system. The proposed technique looks for a corner in the tabulation of the cost function using the determinant of sub-matrices of a third order cumulants data covariance matrix derived from the observed data sequence. The observed sequence is excited by an unobservable input, and is corrupted by zero-mean Gaussian additive noise of unknown variance. The system is driven by a zero-mean independent and identically distributed (i.i.d.) non-Gaussian sequence. Simulation results are presented which demonstrate the performance of the proposed algorithm.
机译:本文仅从系统的输出噪声观测值的三阶累积量出发,解决了自回归移动平均(ARMA)系统的模型阶数估计问题。所提出的技术使用从观察到的数据序列中导出的三阶累积量数据协方差矩阵的子矩阵的行列式在成本函数列表中寻找一个角落。观察到的序列由不可观察的输入激励,并因未知方差的零均值高斯加性噪声而破坏。该系统由零均值独立且均匀分布(i.i.d.)的非高斯序列驱动。仿真结果表明了该算法的性能。

著录项

  • 来源
    《Systems Science》 |2009年第4期|P.15-20|共6页
  • 作者

    Adnan Al-Smadi; Husam A. Hamad;

  • 作者单位

    Department of Computer Science, Prince-Hussein Bin Abdullah College for Information Technology, Al Al-Bayt University, Al-Mafraq, Jordan;

    rnDepartment of Electronics Engineering, Hijjawi College for Engineering Technology, Yarmouk University, Jordan;

  • 收录信息 美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    model order; higher order statistics; determinant; covariance matrix;

    机译:模型订单;高阶统计行列式协方差矩阵;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号