首页> 外文期刊>IEEE Transactions on Signal Processing >Parameter estimation for noncausal ARMA models of non-Gaussian signals via cumulant matching
【24h】

Parameter estimation for noncausal ARMA models of non-Gaussian signals via cumulant matching

机译:通过累积量匹配对非高斯信号的非因果ARMA模型进行参数估计

获取原文
获取原文并翻译 | 示例

摘要

We consider the problem of estimating the parameters of a stable (stationary), scalar ARMA(p,q) signal model driven by an i.i.d. non-Gaussian sequence. The driving noise sequence is not observed. The signal is allowed to be nonminimum phase and/or noncausal (i.e., poles may lie both inside as well as outside the unit circle). We address the problem of parameter identifiability given the higher order cumulants of the signal on a finite set of lags. The sufficient set of lags required to achieve parameter identifiability is the smallest to date. The sufficient conditions for parameter identifiability are also the least restrictive to date. We also propose a frequency-domain approach for time-domain, nonlinear optimization of a quadratic cumulant matching criterion. Illustrative computer simulation results are presented.
机译:我们考虑了估计由i.i.d驱动的稳定(静态)标量ARMA(p,q)信号模型的参数的问题。非高斯序列。未观察到行驶噪音序列。允许信号为非最小相位和/或非因果关系(即,极点可能同时位于单位圆的内部和外部)。考虑到有限滞后上信号的高阶累积量,我们解决了参数可识别性的问题。迄今为止,实现参数可识别性所需的足够多的滞后时间是最小的。到目前为止,参数可识别性的充分条件也是限制最少的条件。我们还提出了一种频域方法,用于二次累积量匹配准则的时域非线性优化。给出了说明性的计算机仿真结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号