首页> 外文期刊>IEEE transactions on systems, man, and cybernetics. Part A >A target identification comparison of Bayesian and Dempster-Shafer multisensor fusion
【24h】

A target identification comparison of Bayesian and Dempster-Shafer multisensor fusion

机译:贝叶斯和Dempster-Shafer多传感器融合的目标识别比较

获取原文
获取原文并翻译 | 示例

摘要

This paper demonstrates how Bayesian and evidential reasoning can address the same target identification problem involving multiple levels of abstraction, such as identification based on type, class, and nature. In the process of demonstrating target identification with these two reasoning methods, we compare their convergence time to a long run asymptote for a broad range of aircraft identification scenarios that include missing reports and misassociated reports. Our results show that probability theory can accommodate all of these issues that are present in dealing with uncertainty and that the probabilistic results converge to a solution much faster than those of evidence theory.
机译:本文演示了贝叶斯和证据推理如何解决涉及多个抽象级别的同一目标识别问题,例如基于类型,类和性质的识别。在使用这两种推理方法演示目标识别的过程中,我们将它们的收敛时间与长期渐近线进行了比较,适用于包括丢失报告和误关联报告在内的多种飞机识别场景。我们的结果表明,概率论可以解决不确定性问题,而概率论的收敛速度快于证据论。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号