首页> 外文期刊>IEEE transactions on systems, man, and cybernetics. Part A, Systems and humans >Robust nonlinear model identification methods using forward regression
【24h】

Robust nonlinear model identification methods using forward regression

机译:使用前向回归的鲁棒非线性模型识别方法

获取原文
获取原文并翻译 | 示例

摘要

In this correspondence new robust nonlinear model construction algorithms for a large class of linear-in-the-parameters models are introduced to enhance model robustness via combined parameter regularization and new robust structural selective criteria. In parallel to parameter regularization, we use two classes of robust model selection criteria based on either experimental design criteria that optimizes model adequacy, or the predicted residual sums of squares (PRESS) statistic that optimizes model generalization capability, respectively. Three robust identification algorithms are introduced, i.e., combined A- and D-optimality with regularized orthogonal least squares algorithm, respectively; and combined PRESS statistic with regularized orthogonal least squares algorithm. A common characteristic of these algorithms is that the inherent computation efficiency associated with the orthogonalization scheme in orthogonal least squares or regularized orthogonal least squares has been extended such that the new algorithms are computationally efficient. Numerical examples are included to demonstrate effectiveness of the algorithms.
机译:在此对应关系中,引入了针对大型参数线性模型的新鲁棒非线性模型构造算法,以通过组合参数正则化和新的鲁棒结构选择准则来增强模型的鲁棒性。与参数正则化并行地,我们分别使用基于模型优化的实验设计标准或优化模型泛化能力的预测残差平方和(PRESS)统计量的两类鲁棒模型选择标准。引入了三种鲁棒的识别算法,即分别将A和D最优与正则化正交最小二乘算法相结合;并将PRESS统计信息与正则化正交最小二乘算法相结合。这些算法的共同特征是,与正交最小二乘或正则化正交最小二乘中的正交化方案相关联的固有计算效率已得到扩展,从而使新算法具有更高的计算效率。包括数值例子,以证明算法的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号