首页> 外文期刊>IEEE transactions on systems, man, and cybernetics. Part A, Systems and humans >Head motion anticipation for virtual-environment applications using kinematics and EMG energy
【24h】

Head motion anticipation for virtual-environment applications using kinematics and EMG energy

机译:使用运动学和EMG能量的虚拟环境应用中的头部运动预测

获取原文
获取原文并翻译 | 示例

摘要

Real-time human-computer interaction plays an important role in virtual-environment (VE) applications. Such interaction can be improved by detecting and reacting to the user's head motion. Today's VE systems use head-mounted inertial sensors to update and spatially stabilize the image displayed to a user through a head-mounted display. Since motion can only be detected after it has already occurred, latencies in the stabilization scheme can only be reduced but never eliminated. Such latencies slow down manual control, cause inaccuracies in matching real and virtual objects through a half-transparent display, and reduce the sense of presence. This paper presents novel methods for reducing VE latencies by anticipating future head motion based on electromyographic (EMG) signals originating from the major neck muscles and head kinematics; it also reports results for anticipation of 17.5 and 35 ms. Features extracted from the EMG signals are used to train a neural network in mapping EMG data, given present head kinematics, into future head motion. The trained network is then used in real time for head-motion anticipation, which gives the VE system the time advantage necessary to compensate for the inherent latencies. The main contribution of this work is the use of EMG energy and bounded head acceleration as the key input/output information, which results in improved performance compared to the previous work.
机译:人机实时交互在虚拟环境(VE)应用程序中起着重要作用。可以通过检测用户的头部动作并对其做出反应来改善这种交互。当今的VE系统使用头戴式惯性传感器来更新和空间稳定通过头戴式显示器显示给用户的图像。由于只能在运动发生后才能检测到运动,因此稳定方案中的延迟只能减少而不能消除。这样的等待时间会减慢手动控制的速度,导致通过半透明的显示器匹配真实对象和虚拟对象时出现误差,并会降低存在感。本文提出了一种新的方法,可以通过基于源自主要颈部肌肉和头部运动的肌电图(EMG)信号预测未来的头部运动来减少VE潜伏期。它还报告了预期的17.5和35 ms的结果。从EMG信号中提取的特征用于训练神经网络,以根据给定的当前头部运动学将EMG数据映射到未来的头部运动中。然后将训练后的网络实时用于头部运动预测,这为VE系统提供了补偿固有延迟所需的时间优势。这项工作的主要贡献是使用EMG能量和有限的头部加速度作为关键的输入/输出信息,与以前的工作相比,可以提高性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号