首页> 外文期刊>IEEE transactions on systems, man, and cybernetics. Part A, Systems and humans >A Novel Intelligent Multiobjective Simulated Annealing Algorithm for Designing Robust PID Controllers
【24h】

A Novel Intelligent Multiobjective Simulated Annealing Algorithm for Designing Robust PID Controllers

机译:鲁棒PID控制器的智能多目标模拟退火算法。

获取原文
获取原文并翻译 | 示例

摘要

This paper proposes an intelligent multiobjective simulated annealing algorithm (IMOSA) and its application to an optimal proportional integral derivative (PID) controller design problem. A well-designed PID-type controller should satisfy the following objectives: 1) disturbance attenuation; 2) robust stability; and 3) accurate setpoint tracking. The optimal PID controller design problem is a large-scale multiobjective optimization problem characterized by the following: 1) nonlinear multimodal search space; 2) large-scale search space; 3) three tight constraints; 4) multiple objectives; and 5) expensive objective function evaluations. In contrast to existing multiobjective algorithms of simulated annealing, the high performance in IMOSA arises mainly from a novel multiobjective generation mechanism using a Pareto-based scoring function without using heuristics. The multiobjective generation mechanism operates on a high-score nondominated solution using a systematic reasoning method based on an orthogonal experimental design, which exploits its neighborhood to economically generate a set of well-distributed nondominated solutions by considering individual and overall objectives. IMOSA is evaluated by using a practical design example of a super-maneuverable fighter aircraft system. An efficient existing multiobjective algorithm, the improved strength Pareto evolutionary algorithm, is also applied to the same example for comparison. Simulation results demonstrate high performance of the IMOSA-based method in designing robust PID controllers.
机译:提出了一种智能多目标模拟退火算法(IMOSA),并将其应用于最优比例积分微分(PID)控制器设计问题。设计良好的PID型控制器应满足以下目标:1)干扰衰减; 2)鲁棒的稳定性; 3)精确的设定点跟踪。最优PID控制器设计问题是具有以下特征的大规模多目标优化问题:1)非线性多峰搜索空间; 2)大规模搜索空间; 3)三个严格的约束; 4)多个目标; 5)昂贵的目标函数评估。与现有的模拟退火多目标算法相比,IMOSA的高性能主要来自使用基于Pareto评分功能的新型多目标生成机制,而无需使用启发式算法。多目标生成机制使用基于正交实验设计的系统推理方法在高分非支配解上运行,该方法利用邻域关系,通过考虑个体和总体目标,经济地生成一组分布良好的非支配解。通过使用超机动战斗机系统的实际设计实例对IMOSA进行了评估。一种有效的现有多目标算法,即改进的强度帕累托进化算法,也被应用于同一示例进行比较。仿真结果表明,在设计鲁棒的PID控制器时,基于IMOSA的方法具有很高的性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号