首页> 外文期刊>Systems, Man and Cybernetics, Part A: Systems and Humans, IEEE Transactions on >Online Updating With a Probability-Based Prediction Model Using Expectation Maximization Algorithm for Reliability Forecasting
【24h】

Online Updating With a Probability-Based Prediction Model Using Expectation Maximization Algorithm for Reliability Forecasting

机译:使用期望最大化算法的基于概率的预测模型进行在线更新以进行可靠性预测

获取原文
获取原文并翻译 | 示例

摘要

Recently, a novel prediction model based on the evidential reasoning (ER) approach is developed to forecast reliability in engineering systems. In order to determine the parameters of the ER-based prediction model, some optimization models have been proposed to train the ER-based prediction model. However, these models are implemented in an offline fashion and thus it is very expensive to train and retrain them when new information is available. This correspondence paper is concerned with developing the recursive algorithms for updating the ER-based prediction model from the probability-based point of view. Using the recursive expectation maximization algorithm, two recursive algorithms are proposed for updating the parameters of the ER-based prediction model under judgmental and numerical outputs, respectively. As such, the proposed algorithms can be used to fine tune the ER-based prediction model online once new information becomes available. We verify the proposed method via a realistic example with missile reliability data.
机译:最近,开发了一种基于证据推理(ER)方法的新型预测模型来预测工程系统中的可靠性。为了确定基于ER的预测模型的参数,已经提出了一些优化模型来训练基于ER的预测模型。但是,这些模型以脱机方式实现,因此在有新信息可用时训练和重新训练它们非常昂贵。该对应文件涉及从基于概率的角度出发开发用于更新基于ER的预测模型的递归算法。利用递归期望最大化算法,提出了两种递归算法,分别在判断输出和数值输出下更新基于ER的预测模型的参数。这样,一旦新信息可用,所提出的算法可用于在线微调基于ER的预测模型。我们通过一个具有导弹可靠性数据的实际示例验证了所提出的方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号