首页> 外文期刊>Systems, Man and Cybernetics, Part A: Systems and Humans, IEEE Transactions on >Anomaly Detection Using Model Generation for Event-Based Systems Without a Preexisting Formal Model
【24h】

Anomaly Detection Using Model Generation for Event-Based Systems Without a Preexisting Formal Model

机译:在不存在正式模型的情况下,基于事件的系统使用模型生成进行异常检测

获取原文
获取原文并翻译 | 示例

摘要

Detecting and debugging faults more efficiently can significantly improve the performance of systems, and a first step toward fault detection is anomaly detection. A new anomaly detection solution is proposed in this paper for event-based systems that consist of processes that interact through shared resources and that do not have a preexisting formal discrete event system model. This solution generates models of the system, assesses the models' performance in detecting faults, and then uses the models and their performance to detect anomalies in new event streams. A new resource-based Petri net formalism is introduced to model these types of systems. The model generation uses an algorithm based on workflow mining to generate resource-based models. The proposed solution is demonstrated on two manufacturing cell examples.
机译:更有效地检测和调试故障可以显着提高系统性能,而故障检测的第一步就是异常检测。本文针对基于事件的系统提出了一种新的异常检测解决方案,该解决方案由通过共享资源进行交互且没有预先存在的正式离散事件系统模型的过程组成。该解决方案生成系统模型,评估模型在检测故障中的性能,然后使用模型及其性能来检测新事件流中的异常。引入了一种新的基于资源的Petri网形式主义来对这些类型的系统进行建模。模型生成使用基于工作流挖掘的算法来生成基于资源的模型。在两个制造单元示例中演示了所提出的解决方案。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号