首页> 外文期刊>Systems, Man, and Cybernetics: Systems, IEEE Transactions on >Optimal Selection of Imperfect Tests for Fault Detection and Isolation
【24h】

Optimal Selection of Imperfect Tests for Fault Detection and Isolation

机译:故障检测和隔离的不完善测试的最佳选择

获取原文
获取原文并翻译 | 示例

摘要

In this paper, we propose new formulations for the problem of test selection in the presence of imperfect tests in order to minimize the total costs of tests subject to lower bound constraints on fault detection and fault isolation. Our formulation allows tests to have multiple outcomes and delays caused by fault propagation, reporting, and transmission. Since the test selection problem is NP-hard even in the presence of perfect binary tests with no delays, we propose genetic algorithm (GA) and Lagrangian relaxation algorithm (LRA) to solve this problem. GA is a general approach for solving the problem with imperfect tests, including the scenarios with delayed and multiple test outcomes. The LRA is suitable for problems with perfect tests, including multiple outcomes. A key advantage of the LRA approach is that it provides an approximate duality gap, which is an upper bound measure of suboptimality of the solution. Our formulations and algorithms are tested on various real-world and simulated systems, and comparisons are made with previous test selection methods developed for perfect tests with no delays. The results show that our methods can efficiently solve the imperfect test selection problem. In addition, they have better performance (measured in terms of the number of tests used) than the methods in the literature for the perfect test selection cases. Finally, the GA has better computational efficiency than the LRA for all of the scenarios with perfect tests.
机译:在本文中,我们针对存在不完善测试的测试选择问题提出了新的公式,以最大程度地降低受故障检测和故障隔离的下限约束的测试总成本。我们的公式允许测试因故障传播,报告和传输而导致多种结果和延迟。由于即使在没有延迟的完美二进制测试的情况下,测试选择问题也是NP难的,所以我们提出了遗传算法(GA)和拉格朗日松弛算法(LRA)来解决此问题。 GA是解决测试不完善问题的通用方法,包括测试结果延迟和多次出现的情况。 LRA适用于具有完美测试的问题,包括多种结果。 LRA方法的关键优势在于它提供了近似的对偶间隙,这是解决方案次优性的上限度量。我们的公式和算法在各种现实世界和模拟系统上进行了测试,并且与为完美测试而开发的先前测试选择方法进行了比较,而没有任何延迟。结果表明,我们的方法可以有效地解决不完善的测试选择问题。此外,与文献中针对理想测试选择案例的方法相比,它们具有更好的性能(根据使用的测试数量衡量)。最后,对于具有完美测试的所有方案,GA的计算效率均高于LRA。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号