首页> 外文期刊>Systems, Man, and Cybernetics: Systems, IEEE Transactions on >Coupled Factorial Hidden Markov Models (CFHMM) for Diagnosing Multiple and Coupled Faults
【24h】

Coupled Factorial Hidden Markov Models (CFHMM) for Diagnosing Multiple and Coupled Faults

机译:耦合因子隐马尔可夫模型(CFHMM)用于诊断多个和耦合故障

获取原文
获取原文并翻译 | 示例

摘要

In this paper, we formulate a coupled factorial hidden Markov model-based (CFHMM) framework to diagnose dependent faults occurring over time (dynamic case). In our previous research, the problem of diagnosing multiple faults over time (dynamic multiple fault diagnosis (DMFD)) is solved based on a sequence of test outcomes by assuming that the faults and their time evolution are independent. This problem is NP-hard, and, consequently, we developed a polynomial approximation algorithm using Lagrangian relaxation within a FHMM framework. Here, we extend this formulation to a mixed memory Markov coupling model, termed dynamic coupled fault diagnosis (DCFD) problem, to determine the most likely sequence of (dependent) fault states, the one that best explains the observed test outcomes over time. An iterative Gauss-Seidel coordinate ascent optimization method is proposed for solving the DCFD problem. A soft Viterbi algorithm is also implemented within the framework for decoding-dependent fault states over time. We demonstrate the algorithm on simulated systems with coupled faults and the results show that this approach improves the correct isolation rate (CI) as compared to the formulation where independent fault states (DMFD) are assumed. As a by-product, we show empirically that, while diagnosing for independent faults, the DMFD algorithm based on block coordinate ascent method, although it does not provide a measure of suboptimality, provides better primal cost and higher CI than the Lagrangian relaxation method for independent fault case. Two real-world examples (a hybrid electric vehicle, and a mobile autonomous robot) with coupled faults are also used to evaluate the proposed framework.
机译:在本文中,我们制定了一个基于耦合因式隐马尔可夫模型的框架(CFHMM),以诊断随时间而发生的相关故障(动态情况)。在我们先前的研究中,通过假设故障及其时间演化是独立的,基于一系列测试结果来解决随时间诊断多个故障(动态多故障诊断(DMFD))的问题。这个问题是NP难题,因此,我们在FHMM框架内使用拉格朗日弛豫开发了多项式逼近算法。在这里,我们将此公式扩展到一个称为动态耦合故障诊断(DCFD)问题的混合记忆马尔可夫耦合模型,以确定最可能的(相关)故障状态序列,该序列可以最好地解释随时间推移所观察到的测试结果。为解决DCFD问题,提出了一种迭代的高斯-塞德尔坐标上升优化方法。在框架内还实现了软维特比算法,用于随时间解码与故障有关的故障状态。我们在耦合故障的仿真系统上演示了该算法,结果表明,与假设独立故障状态(DMFD)的公式相比,该方法提高了正确的隔离率(CI)。作为副产品,我们凭经验表明,在诊断独立故障时,基于块坐标上升法的DMFD算法虽然不能提供次优性的度量,但与拉格朗日松弛法相比,它提供了更好的原始成本和更高的CI。独立故障案例。带有耦合故障的两个实际示例(混合动力电动汽车和移动自主机器人)也用于评估提出的框架。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号