首页> 外文期刊>Studies in Informatics and Control >An Optimized Artificial Neural Network Approach Based on Sperm Whale Optimization Algorithm for Predicting Fertility Quality
【24h】

An Optimized Artificial Neural Network Approach Based on Sperm Whale Optimization Algorithm for Predicting Fertility Quality

机译:基于抹香优化算法的人工神经网络优化预测生育力

获取原文
获取原文并翻译 | 示例

摘要

This research introduces a new approach for predicting reproductive health by using the Sperm Whale Optimization algorithm (SWA) with Artificial Neural Networks (ANN-SWA). SWA is an emerging method with a powerful potential in tackling optimization difficulties based on its adaptability in searching mechanisms. ANN-SWA consists of four phases. The first phase is conditioned by the fertility disease which is a complex and multifactorial condition with increasing incidence. The fertility data is trained (90 cases) and the approach is then used to test findings in the test set (10 cases). In the second phase, the multilayer perceptron (MLP) is used to determine the maximum fitness function by getting the global minimum and hence, it revokes the ANN trapped in local. In the third phase, it optimizes and controls the parameters (weights and biases) to ensure rapid convergence with accuracy. In the fourth phase, ANN-SWA is used to predict the fertility quality and determine the accuracy. The results are verified by comparing them with optimization and classification algorithms. The quantitative and qualitative outcomes show that the proposed approach is able to outperform the current algorithms on the fertility dataset in the convergence rate of classification. The results demonstrate that an artificial neural network based on SWA achieved more than 99.96% of the accuracy of the approach.
机译:这项研究介绍了一种通过结合人工神经网络(ANN-SWA)使用抹香鲸优化算法(SWA)来预测生殖健康的新方法。 SWA是一种新兴方法,基于其在搜索机制中的适应性,在解决优化难题方面具有强大的潜力。 ANN-SWA包含四个阶段。第一阶段受生育能力疾病的影响,这是一个复杂且多因素的疾病,发病率不断上升。训练生育力数据(90例),然后使用该方法测试测试集中的发现(10例)。在第二阶段,多层感知器(MLP)用于通过获取全局最小值来确定最大适应度函数,因此,它会撤销陷入局部的ANN。在第三阶段,它优化和控制参数(权重和偏差)以确保快速收敛。在第四阶段,使用ANN-SWA预测生育质量并确定准确性。通过将它们与优化和分类算法进行比较来验证结果。定量和定性结果表明,该方法在分类的收敛速度上能够胜过当前关于生育率数据集的算法。结果表明,基于SWA的人工神经网络实现了该方法的99.96%以上的准确性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号