首页> 外文期刊>Structural health monitoring >Rotor health monitoring combining spin tests and data-driven anomaly detection methods
【24h】

Rotor health monitoring combining spin tests and data-driven anomaly detection methods

机译:转子健康监测结合了旋转测试和数据驱动的异常检测方法

获取原文
获取原文并翻译 | 示例

摘要

Health monitoring is highly dependent on sensor systems that are capable of performing in various engine environmental conditions and able to transmit a signal upon a predetermined crack length, while acting in a neutral form upon the overall performance of the engine system. Efforts are under way at NASA Glenn Research Center through support of the Intelligent Vehicle Health Management Project (IVHM) to develop and implement such sensor technology for a wide variety of applications. These efforts are focused on developing high temperature, wireless, low cost, and durable products. In an effort to address technical issues concerning health monitoring, this article considers data collected from an experimental study using high frequency capacitive sensor technology to capture blade tip clearance and tip timing measurements in a rotating turbine engine-like-disk to detect the disk faults and assess its structural integrity. The experimental results composed at a range of rotational speeds from tests conducted at the NASA Glenn Research Center's Rotordynamics Laboratory are evaluated and integrated into multiple data-driven anomaly detection techniques to identify faults and anomalies in the disk. In summary, this study presents a select evaluation of online health monitoring of a rotating disk using high caliber capacitive sensors and demonstrates the capability of the in-house spin system.
机译:健康监测高度依赖于传感器系统,该传感器系统能够在各种发动机环境条件下运行,并能够在预定的裂纹长度下发送信号,同时以中立的形式作用于发动机系统的整体性能。通过智能车辆健康管理项目(IVHM)的支持,美国宇航局格伦研究中心正在努力开发和实施这种传感器技术,以用于各种应用。这些努力集中于开发高温,无线,低成本和耐用的产品。为了解决与健康监控有关的技术问题,本文考虑了使用高频电容传感器技术从实验研究中收集的数据,以捕获类似旋转涡轮发动机的磁盘中的叶尖间隙和叶尖正时测量值,从而检测出磁盘故障并评估其结构完整性。在NASA格伦研究中心的转子动力学实验室进行的测试中,在各种转速范围内组成的实验结果均经过评估,并集成到多种数据驱动的异常检测技术中,以识别磁盘中的故障和异常。总而言之,这项研究提出了使用高口径电容传感器对转盘进行在线健康状况监测的精选评估,并证明了内部自旋系统的功能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号