首页> 外文期刊>Structural health monitoring >An adaptive and efficient variational mode decomposition and its application for bearing fault diagnosis
【24h】

An adaptive and efficient variational mode decomposition and its application for bearing fault diagnosis

机译:自适应和有效的变分模式分解及其用于轴承故障诊断的应用

获取原文
获取原文并翻译 | 示例

摘要

Variational mode decomposition has been widely applied to machinery fault diagnosis during these years. However, it remains difficult to set proper hyperparameters for the variational mode decomposition, including number of decomposed modes, initial center frequencies, and balance parameter. Moreover, the low efficiency of the existing variational mode decomposition methods hinders their applications to practical diagnostic task. This article proposes an adaptive and efficient variational mode decomposition method after thoroughly investigating its convergence property characteristic. A convergent tendency phenomenon is discovered and is explained mathematically for the first time. Motivated by the convergent tendency phenomenon, the proposed method rapidly and adaptively determines the number and the optimal initial center frequencies of signal latent modes with the guidance of the convergent tendencies of the initial center frequencies changing from small to large. In the proposed method, the number of decomposed modes and initial center frequencies are not hyperparameters that require to be set in advance any more, but are parameters learned from the analyzed signals. The determined parameters enable efficient extraction of the main latent modes contained in the analyzed signals. Therefore, the proposed variational mode decomposition method represents a major improvement in parameter adaption and decomposition efficiency over the existing variational mode decomposition methods. In the application for bearing fault diagnosis, the faulty modes are selected adaptively and the corresponding balance parameters are further optimized efficiently. Two experimental cases validate the proposed method and its superiority over the existing variational mode decomposition methods and the classical fast spectral kurtosis in bearing fault diagnosis.
机译:变分模式分解已经广泛应用于这些年内的机械故障诊断。但是,对于变分模式分解,它仍然难以设置适当的超参数,包括分解模式,初始中心频率和平衡参数的数量。此外,现有变分模式分解方法的低效率将其应用妨碍了实际诊断任务。本文提出了一种自适应和有效的变分模式分解方法,在彻底研究其收敛性特性之后。发现会聚趋势现象,并首次在数学上进行解释。通过收敛趋势现象的激励,所提出的方法迅速,自适应地确定信号潜模式的数量和最佳初始中心频率,其具有从小到大小的初始中心频率的收敛趋势的引导。在所提出的方法中,分解模式和初始中心频率的数量不是需要预先设置的近似参数,而是从分析的信号中学习的参数。所确定的参数能够有效地提取分析信号中包含的主要潜模式。因此,所提出的变分模式分解方法表示现有变分解模式分解方法参数适应和分解效率的重大改进。在轴承故障诊断的应用中,自适应选择故障模式,并有效地进行了相应的余额参数。两种实验案例验证了所提出的方法及其在现有的分析模式分解方法和轴承故障诊断中的经典快速光谱峰度。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号