首页> 外文期刊>Structural equation modeling >Exploratory Structural Equation Modeling, Integrating CFA and EFA: Application to Students' Evaluations of University Teaching
【24h】

Exploratory Structural Equation Modeling, Integrating CFA and EFA: Application to Students' Evaluations of University Teaching

机译:探索性结构方程建模,将CFA和EFA集成在一起:在学生对大学教学的评估中的应用

获取原文
获取原文并翻译 | 示例

摘要

This study is a methodological-substantive synergy, demonstrating the power and flexibility of exploratory structural equation modeling (ESEM) methods that integrate confirmatory and exploratory factor analyses (CFA and EFA), as applied to substantively important questions based on multidimentional students' evaluations of university teaching (SETs). For these data, there is a well established ESEM structure but typical CFA models do not fit the data and substantially inflaterncorrelations among the nine SET factors (median rs = .34 for ESEM, .72 for CFA) in a way that undermines discriminant validity and usefulness as diagnostic feedback. A 13-model taxonomy of ESEM measurement invariance is proposed, showing complete invariance (factor loadings, factor correlations, item uniquenesses, item intercepts, latent means) over multiple groups based on the SETs collected in the first and second halves of a 13-year period. Fully latent ESEM growth models that unconfounded measurement error from communality showed almost no linear or quadratic effects over this 13-year period. Latent multiple indicators multiple causes models showed that relations with background variables (workload/difficulty, class size, prior subject interest, expected grades) were small in size and varied systematically for different ESEM SET factors, supporting their discriminant validity and a construct validity interpretation of the relations. A new approach to higher order ESEM was demonstrated, but was not fully appropriate for these data. Based on ESEM methodology, substantively important questions were addressed that could not be appropriately addressed with a traditional CFA approach.
机译:这项研究是方法学上的实质协同作用,展示了探索性结构方程建模(ESEM)方法的强大功能和灵活性,该方法结合了验证性和探索性因素分析(CFA和EFA),该方法适用于基于多维学生对大学的评估的实质性重要问题教学(SET)。对于这些数据,有一个完善的ESEM结构,但典型的CFA模型不适合该数据,并且在9个SET因子之间(ESEM的中位数rs = 0.34,CFA的中位数rs = 0.72)之间存在明显的虚相关性,从而破坏了判别效度和用作诊断反馈。提出了一种ESEM测量不变性的13模型分类法,该模型基于在13年的上半年和下半年收集的SET显示了多个组的完全不变性(因素负荷,因素相关性,项目唯一性,项目拦截,潜在均值)期。完全无误的ESEM增长模型(未混淆来自社区的测量误差)在这13年间几乎没有线性或二次效应。潜在的多指标多原因模型表明,与背景变量(工作量/难度,班级规模,在先学科兴趣,预期成绩)的关系较小,并且针对不同的ESEM SET因素系统地变化,从而支持了它们的判别效度和结构效度解释。关系。演示了一种用于高阶ESEM的新方法,但不适用于这些数据。基于ESEM方法论,解决了传统CFA方法无法适当解决的实质性重要问题。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号