首页> 外文期刊>Structural Control and Health Monitoring >Automatic mapping of cracking patterns on concrete surfaces with biological stains using hyper-spectral images processing
【24h】

Automatic mapping of cracking patterns on concrete surfaces with biological stains using hyper-spectral images processing

机译:利用超光谱图像处理自动映射混凝土表面上的混凝土表面

获取原文
获取原文并翻译 | 示例

摘要

Despite all technological advances, mapping cracks on concrete structures mostly remains to be evaluated through sketches based on on-site observation and photographs. Methods based on image processing have been developed with clear advantages. However, most studies rely on perfectly identified areas or on single cracks without any other pathologies, being therefore unsuitable for on-site application. In addition, the accuracy is not usually quantified due to the absence of ground-truth. Thus, methods for automatic mapping of cracking patterns, sufficiently robust to deal with the surrounding pathologies, are of great interest. The Super Cluster-Crack method (SC-Crack method) is herein presented. It was developed for crack detection in concrete surfaces, with biological stains, by processing hyperspectral images. SC-Crack performs k-means clustering, followed by grouping clusters to composing a super cluster that stands for the cracks. The method was calibrated and validated by classifying hyperspectral images of concrete specimens, within bandwidths of 25nm in a wavelength range between 425nm and 950nm. Results are discussed by comparison with the ground-truth image. Finally, the super cluster composition is also validated. The SC-Crack method performs successfully both on clean and on surface with biological stains. In the latter case, hyperspectral images help to avoid mixing biological stains with crack pattern. Concerning the main goal of mapping the cracking pattern, the method performs perfectly on concrete clean surfaces, allowing to detect all the crack branches. In the case of surface with biological stains, the SC-Crack also detects the majority of cracking pattern, except for the thinner branches.
机译:尽管存在所有技术进步,但混凝土结构上的映射裂缝主要是通过基于现场观察和照片的草图来评估的。基于图像处理的方法已经开发出明显的优点。然而,大多数研究依赖于完全鉴定的区域或在没有任何其他病理的单一裂缝上,因此不适合现场申请。此外,由于没有地面真理,准确性通常不会被量化。因此,用于自动映射裂缝模式的方法,对处理周围病理的充分稳健地具有很大的兴趣。本文提出了超级簇裂纹方法(SC裂纹方法)。通过加工高光谱图像,在混凝土表面的裂纹检测中开发出裂纹检测。 SC-Crack执行K-Means群集,然后进行分组群集,以构思代表裂缝的超级群集。通过对混凝土样本的高光谱图像进行分类,在425nm至950nm之间的波长范围内的带宽范围内进行校准并验证。通过与地面真相图像进行比较讨论了结果。最后,还验证了超级簇组成。 SC-Crack方法在清洁和表面上成功地进行了生物污渍。在后一种情况下,高光谱图像有助于避免用裂纹模式混合生物污渍。关于绘制裂缝模式的主要目标,该方法在混凝土清洁表面上完美地执行,允许检测所有裂缝分支。在具有生物污渍的表面的情况下,SC-Crack还检测到大部分裂化模式,除了较薄的分支。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号