首页> 外文期刊>Structural Control and Health Monitoring >A sensitivity-based finite element model updating based on unconstrained optimization problem and regularized solution methods
【24h】

A sensitivity-based finite element model updating based on unconstrained optimization problem and regularized solution methods

机译:基于无约束优化问题和正则化求解方法的基于灵敏度的有限元模型更新

获取原文
获取原文并翻译 | 示例

摘要

An effective and reliable approach to updating finite element (FE) models of real structures is to utilize a sensitivity-based strategy. A challenging issue concerning the sensitivity-based finite element model updating (FEMU) is to create a well-established framework for updating the inherent structural properties of FE models under incomplete noisy modal data. When noise contaminates the measured modal parameters, another challenging issue stems from the ill-posedness of the FEMU inverse problem. This article proposes an innovative sensitivity-based FEMU strategy based on the combination of modal kinetic energy and modal strain energy for simultaneously updating the element mass and stiffness matrices of FE models. The great novelty of this strategy is to get an idea from the unconstrained optimization problem for the establishment of a sensitivity-based FEMU framework. The correction of the element mass and stiffness matrices in a simultaneous way is another novelty of the proposed FEMU strategy. Moreover, new iterative and hybrid regularization methods under the Krylov subspace theory and bidiagonalization process are presented to solve the ill-posed inverse problem of FEMU. The accuracy and reliability of the proposed methods are numerically validated by a two-story concrete frame and a two-span continuous steel truss along with some comparative analyses. Results demonstrate that the suggested sensitivity-based strategy and regularized solution methods are influential and successful in FEMU under incomplete noisy modal data.
机译:更新真实结构的有限元(FE)模型的有效且可靠的方法是利用基于灵敏度的策略。关于基于灵敏度的有限元模型更新(FEMU)的一个具有挑战性的问题是创建一个完善的框架,用于在不完整的噪声模态数据下更新FE模型的固有结构特性。当噪声污染了测得的模态参数时,另一个具有挑战性的问题便是FEMU反问题的不适定性。本文提出了一种基于模态动能和模态应变能相结合的基于灵敏度的创新FEMU策略,用于同时更新FE模型的单元质量和刚度矩阵。该策略的新颖之处在于,可以从无约束的优化问题中获得想法,以建立基于灵敏度的FEMU框架。同时校正单元质量和刚度矩阵是所提出的FEMU策略的另一个新颖之处。此外,提出了在Krylov子空间理论和双对角化过程下的新的迭代和混合正则化方法,以解决FEMU的不适定逆问题。通过两层混凝土框架和两跨连续钢桁架以及一些对比分析,对所提方法的准确性和可靠性进行了数值验证。结果表明,在噪声模态数据不完整的情况下,建议的基于灵敏度的策略和正规化的解决方法在FEMU中具有影响力并且是成功的。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号