首页> 外文期刊>Structural Control and Health Monitoring >Variability of updated finite element models and their predictions consistent with vibration measurements
【24h】

Variability of updated finite element models and their predictions consistent with vibration measurements

机译:更新的有限元模型的可变性及其与振动测量结果一致的预测

获取原文
获取原文并翻译 | 示例

摘要

A case study on a small-scale laboratory vehicle frame is used to investigate the variability of the updated finite element (FE) models that arises from model and measurement errors and demonstrate the effect of this variability on response predictions. Conventional weighted modal residuals and recently introduced multi-objective identification methods for structural model updating are used to provide the entire spectrum of Pareto optimal FE models consistent with the measured modal data. Similarities and differences between the two model updating methods are explored and the advantages of the multi-objective identification methods are emphasized. A significant variability in Pareto optimal models is observed, which is indicative of the uncertainty in the updated FE models. The dependence of the variability of the Pareto models on the information contained in the measured data and the size of model and measurement errors is explored by varying the number of measured modes, number of sensors, FE mesh discretization sizes, and number of model parameters. The effectiveness of the updated Pareto optimal models and their predictive capabilities are assessed. Frequency response functions and fatigue lifetime predictions are used as example of structural performance variables in order to demonstrate the variability in the response predictions that arises from the variability in the Pareto optimal models. A large variability in the response predictions is observed that cannot be ignored in decisions based on updated FE models. The multi-objective optimization method provides the general framework for properly accounting for model uncertainty in model-based response predictions consistent with measured data. Copyright © 2011 John Wiley & Sons, Ltd.
机译:以小型实验室车架为例,研究了由于模型和测量误差引起的更新有限元(FE)模型的变异性,并证明了这种变异性对响应预测的影响。传统的加权模态残差和最近引入的用于结构模型更新的多目标识别方法用于提供与实测模态数据一致的整个Pareto最优有限元模型。探索了两种模型更新方法之间的异同,强调了多目标识别方法的优点。在帕累托最优模型中观察到明显的可变性,这表明更新的有限元模型中存在不确定性。通过改变测量模式的数量,传感器的数量,有限元网格离散化的大小和模型参数的数量,探索了帕累托模型的可变性对测量数据中所包含的信息以及模型大小和测量误差的依赖性。评估了更新后的帕累托最优模型的有效性及其预测能力。频率响应函数和疲劳寿命预测被用作结构性能变量的示例,以证明响应预测的变异性是由帕累托最优模型中的变异性引起的。观察到响应预测中存在很大的可变性,这在基于更新的有限元模型的决策中无法忽略。多目标优化方法为在与测量数据一致的基于模型的响应预测中正确考虑模型不确定性提供了通用框架。版权所有©2011 John Wiley&Sons,Ltd.

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号