首页> 外文期刊>Stochastic environmental research and risk assessment >A new principal component analysis by particle swarm optimization with an environmental application for data science
【24h】

A new principal component analysis by particle swarm optimization with an environmental application for data science

机译:粒子群优化与数据科学环境应用的新主成分分析

获取原文
获取原文并翻译 | 示例

摘要

In this paper, we propose a new method for disjoint principal component analysis based on an intelligent search. The method consists of a principal component analysis with constraints, allowing us to determine components that are linear combinations of disjoint subsets of the original variables. The effectiveness of the proposed method contributes to solve one of the crucial problems of multivariate analysis, that is, the interpretation of the vectorial subspaces in the reduction of the dimensionality. The method selects the variables that contribute the most to each of the principal components in a clear and direct way. Numerical results are provided to confirm the quality of the solutions attained by the proposed method. This method avoids a local optimum and obtains a high success rate when reaching the best solution, which occurs in all the cases of our simulation study. An illustration with environmental real data shows the good performance of the method and its potential applications.
机译:在本文中,我们提出了一种基于智能搜索的脱编主成分分析的新方法。该方法包括具有约束的主成分分析,允许我们确定原始变量的脱编子集的线性组合的组件。所提出的方法的有效性有助于解决多变量分析的关键问题,即矢量子空间在减少维度中的解释。该方法选择以清晰直接的方式为每个主组件提供最大贡献的变量。提供了数值结果以确认所提出的方法所获得的解决方案的质量。该方法避免了局部最佳,并且在达到最佳解决方案时获得高成功率,这发生在我们的模拟研究的所有情况下。具有环境实际数据的插图显示了该方法及其潜在应用的良好性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号