首页> 外文期刊>Statistics >Maximum-likelihood estimation and influence analysis in multivariate skew-normal reproductive dispersion mixed models for longitudinal data
【24h】

Maximum-likelihood estimation and influence analysis in multivariate skew-normal reproductive dispersion mixed models for longitudinal data

机译:纵向数据多元偏态-正态繁殖离散混合模型的最大似然估计和影响分析

获取原文
获取原文并翻译 | 示例

摘要

Various mixed models were developed to capture the features of between- and within-individual variation for longitudinal data under the normality assumption of the random effect and the within-individual random error. However, the normality assumption may be violated in some applications. To this end, this article assumes that the random effect follows a skew-normal distribution and the within-individual error is distributed as a reproductive dispersion model. An expectation conditional maximization (ECME) algorithm together with the Metropolis-Hastings (MH) algorithm within the Gibbs sampler is presented to simultaneously obtain estimates of parameters and random effects. Several diagnostic measures are developed to identify the potentially influential cases and assess the effect of minor perturbation to model assumptions via the case-deletion method and local influence analysis. To reduce the computational burden, we derive the first-order approximations to case-deletion diagnostics. Several simulation studies and a real data example are presented to illustrate the newly developed methodologies.
机译:在随机效应和个体内部随机误差的正态假设下,开发了各种混合模型来捕获纵向数据的个体之间和个体内部变化的特征。但是,在某些应用程序中可能会违反正常性假设。为此,本文假设随机效应服从正态正态分布,并且个体内部误差作为生殖扩散模型分布。提出了Gibbs采样器中的期望条件最大化(ECME)算法和Metropolis-Hastings(MH)算法,以同时获取参数和随机效应的估计值。已开发了几种诊断措施来识别潜在影响的案例,并通过案例删除方法和局部影响分析来评估轻微扰动对模型假设的影响。为了减少计算负担,我们导出了案例删除诊断的一阶近似值。提出了一些仿真研究和一个实际数据示例来说明新开发的方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号