首页> 外文期刊>Statistics and computing >Anomaly and Novelty detection for robust semi-supervised learning
【24h】

Anomaly and Novelty detection for robust semi-supervised learning

机译:强劲半监督学习的异常和新奇检测

获取原文
获取原文并翻译 | 示例

摘要

Three important issues are often encountered in Supervised and Semi-Supervised Classification: class memberships are unreliable for some training units (label noise), a proportion of observations might depart from the main structure of the data (outliers) and new groups in the test set may have not been encountered earlier in the learning phase (unobserved classes). The present work introduces a robust and adaptive Discriminant Analysis rule, capable of handling situations in which one or more of the aforementioned problems occur. Two EM-based classifiers are proposed: the first one that jointly exploits the training and test sets (transductive approach), and the second one that expands the parameter estimation using the test set, to complete the group structure learned from the training set (inductive approach). Experiments on synthetic and real data, artificially adulterated, are provided to underline the benefits of the proposed method.
机译:在监督和半监督分类中常常遇到三个重要问题:对于某些培训单位(标签噪声)课程成员不可靠,观察比例可能会导致数据(异常值)和测试集中的新组的主要结构可能在学习阶段之前尚未遇到(未观察到的课程)。本工作引入了一种稳健和自适应的判别分析规则,能够处理发生一个或多个上述问题的情况。提出了两个基于EM的分类器:第一个共同利用训练和测试集(转换方法),以及使用测试集扩展参数估计的第二个分类器,以完成从训练集中学习的组结构(归纳方法)。提供了人为掺假的合成和实数据的实验,以强调提出的方法的益处。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号