首页> 外文期刊>Statistics and computing >Random time step probabilistic methods for uncertainty quantification in chaotic and geometric numerical integration
【24h】

Random time step probabilistic methods for uncertainty quantification in chaotic and geometric numerical integration

机译:随机时间步概率方法,用于混沌和几何数字集成中的不确定量化

获取原文
获取原文并翻译 | 示例

摘要

A novel probabilistic numerical method for quantifying the uncertainty induced by the time integration of ordinary differential equations (ODEs) is introduced. Departing from the classical strategy to randomise ODE solvers by adding a random forcing term, we show that a probability measure over the numerical solution of ODEs can be obtained by introducing suitable random time steps in a classical time integrator. This intrinsic randomisation allows for the conservation of geometric properties of the underlying deterministic integrator such as mass conservation, symplecticity or conservation of first integrals. Weak and mean square convergence analysis is derived. We also analyse the convergence of the Monte Carlo estimator for the proposed random time step method and show that the measure obtained with repeated sampling converges in the mean square sense independently of the number of samples. Numerical examples including chaotic Hamiltonian systems, chemical reactions and Bayesian inferential problems illustrate the accuracy, robustness and versatility of our probabilistic numerical method.
机译:介绍了一种用于量化常微分方程(ODES)的时间集成诱导的不确定性的新颖概率数值方法。通过添加随机强制术语,从古典策略到随机颂歌求解器,我们表明通过在经典时间积分器中引入合适的随机时间步骤,可以通过在经典时间积分器中引入合适的随机时间步骤来获得概率测量。这种内在的随机化允许保护潜在的确定性积分器的几何特性,例如质量保护,杂项或第一个积分的保护。源于弱和均方的方形收敛分析。我们还分析了蒙特卡罗估计器的融合,以了解所提出的随机时间步长方法,并表明,通过重复采样获得的度量与样品的数量无关地收敛在平均方形感中。包括混沌Hamiltonian系统,化学反应和贝叶斯推理问题的数值例子说明了我们概率数值方法的准确性,鲁棒性和多功能性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号