首页> 外文期刊>Statistics and computing >Bayesian model learning based on a parallel MCMC strategy
【24h】

Bayesian model learning based on a parallel MCMC strategy

机译:基于并行MCMC策略的贝叶斯模型学习

获取原文
获取原文并翻译 | 示例

摘要

We introduce a novel Markov chain Monte Carlo algorithm for estimation of posterior probabilities over discrete model spaces. Our learning approach is applicable to families of models for which the marginal likelihood can be analytically calculated, either exactly or approximately, given any fixed structure. It is argued that for certain model neighborhood structures, the ordinary reversible Metropolis-Hastings algorithm does not yield an appropriate solution to the estimation problem. Therefore, we develop an alternative, non-reversible algorithm which can avoid the scaling effect of the neighborhood. To efficiently explore a model space, a finite number of interacting parallel stochastic processes is utilized. Our interaction scheme enables exploration of several local neighborhoods of a model space simultaneously, while it prevents the absorption of any particular process to a relatively inferior state. We illustrate the advantages of our method by an application to a classification model. In particular, we use an extensive bacterial database and compare our results with results obtained by different methods for the same data.
机译:我们介绍了一种新颖的马尔可夫链蒙特卡罗算法,用于估计离散模型空间上的后验概率。我们的学习方法适用于一系列模型,这些模型的边际可能性可以在给定任何固定结构的情况下,精确地或近似地进行分析计算。有人认为,对于某些模型邻域结构,普通的可逆Metropolis-Hastings算法不能为估计问题提供适当的解决方案。因此,我们开发了另一种不可逆的算法,可以避免邻域的缩放效应。为了有效地探索模型空间,利用了有限数量的相互作用的并行随机过程。我们的交互方案可以同时探索模型空间的多个局部邻域,同时防止将任何特定过程吸收到相对较低的状态。我们通过对分类模型的应用说明了我们方法的优势。特别是,我们使用了广泛的细菌数据库,并将我们的结果与通过不同方法获得的相同数据进行比较。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号