首页> 外文期刊>Statistics and computing >Parallelizing MCMC for Bayesian spatiotemporal geostatistical models
【24h】

Parallelizing MCMC for Bayesian spatiotemporal geostatistical models

机译:贝叶斯时空地统计模型的并行MCMC

获取原文
获取原文并翻译 | 示例

摘要

When MCMC methods for Bayesian spatiotemporal modeling are applied to large geostatistical problems, challenges arise as a consequence of memory requirements, computing costs, and convergence monitoring. This article describes the parallelization of a reparametrized and marginalized posterior sampling (RAMPS) algorithm, which is carefully designed to generate posterior samples efficiently. The algorithm is implemented using the Parallel Linear Algebra Package (PLAPACK). The scalability of the algorithm is investigated via simulation experiments that are implemented using a cluster with 25 processors. The usefulness of the method is illustrated with an application to sulfur dioxide concentration data from the Air Quality System database of the U.S. Environmental Protection Agency.
机译:当将用于贝叶斯时空建模的MCMC方法应用于大型地统计学问题时,由于内存需求,计算成本和收敛监控的结果,挑战就出现了。本文介绍了经过重新设计和边缘化的后验采样(RAMPS)算法的并行化,该算法经过精心设计,可以高效地生成后验样本。该算法使用并行线性代数包(PLAPACK)来实现。该算法的可伸缩性是通过使用25个处理器的集群实现的仿真实验进行研究的。该方法的实用性通过应用到美国环境保护署空气质量系统数据库中的二氧化硫浓度数据中得到了说明。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号