首页> 外文期刊>Statistical Methods and Applications >On the norms of kernel regression estimators for incomplete data with applications to classification
【24h】

On the norms of kernel regression estimators for incomplete data with applications to classification

机译:关于不完整数据的核回归估计量范数及其在分类中的应用

获取原文
获取原文并翻译 | 示例

摘要

We consider kernel methods to construct nonparametric estimators of a regression function based on incomplete data. To tackle the presence of incomplete covariates, we employ Horvitz-Thompson-type inverse weighting techniques, where the weights are the selection probabilities. The unknown selection probabilities are themselves estimated using (1) kernel regression, when the functional form of these probabilities are completely unknown, and (2) the least-squares method, when the selection probabilities belong to a known class of candidate functions. To assess the overall performance of the proposed estimators, we establish exponential upper bounds on the norms, , of our estimators; these bounds immediately yield various strong convergence results. We also apply our results to deal with the important problem of statistical classification with partially observed covariates.
机译:我们考虑采用核方法构造基于不完整数据的回归函数的非参数估计量。为了解决不完整协变量的存在,我们采用Horvitz-Thompson型反加权技术,其中权重是选择概率。未知选择概率本身是使用以下方法估算的:(1)当这些概率的函数形式完全未知时,进行核回归,以及(2)当选择概率属于已知函数类时,采用最小二乘法。为了评估建议的估算器的总体性能,我们在估算器的范数上建立指数上限。这些界限立即产生各种强大的收敛结果。我们还将我们的结果用于处理部分观察到的协变量的统计分类的重要问题。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号