首页> 外文期刊>Statistical Methodology >Bayesian estimation and the application of long memory stochastic volatility models
【24h】

Bayesian estimation and the application of long memory stochastic volatility models

机译:贝叶斯估计和长记忆随机波动率模型的应用

获取原文
获取原文并翻译 | 示例

摘要

A new sampling-based Bayesian approach to the long memory stochastic volatility (LMSV) process is presented; the method is motivated by the GPH-estimator in fractionally integrated autoregressive moving average (ARFIMA) processes, which was originally proposed by J. Geweke and S. Porter-Hudak [The estimation and application of long memory time series models, Journal of Time Series Analysis, 4 (1983) 221-238]. In this work, we perform an estimation of the memory parameter in the Bayesian framework; an estimator is obtained by maximizing the posterior density of the memory parameter. Finally, we compare the GPH-estimator and the Bayes-estimator by means of a simulation study and our new approach is illustrated using several stock market indices; the new estimator is proved to be relatively stable for the various choices of frequencies used in the regression.
机译:提出了一种新的基于采样的贝叶斯方法来解决长记忆随机波动率(LMSV)过程。该方法由GPH估计器在分数积分自回归移动平均(ARFIMA)过程中激发,该过程最初由J. Geweke和S. Porter-Hudak提出[长记忆时间序列模型的估计和应用,时间序列杂志分析(4)(1983)221-238]。在这项工作中,我们对贝叶斯框架中的存储参数进行了估计。通过最大化存储参数的后验密度来获得估计量。最后,我们通过模拟研究比较了GPH估计量和Bayes估计量,并使用了几个股票市场指数说明了我们的新方法。事实证明,对于回归中使用的各种频率选择,新的估算器相对稳定。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号