...
首页> 外文期刊>IEEE Journal of Solid-State Circuits >Cell height driven transistor sizing in a cell based static CMOS module design
【24h】

Cell height driven transistor sizing in a cell based static CMOS module design

机译:基于单元的静态CMOS模块设计中的单元高度驱动晶体管尺寸

获取原文
获取原文并翻译 | 示例
           

摘要

We considered a post-layout transistor sizing problem in a static CMOS module layout. The transistor sizer proposed in this paper is different from previous approaches which work on a full-custom layout and optimizes a module layout on several rows of automatically generated leaf cells. The sizing is performed at two levels. At the module level, a leaf cell is chosen based on a height slack (usable area) and timing slack. At the cell level, the cell is sized based on a width constraint imposed from the module level. The object is to minimize the difference of the actual arrival time and the required arrival time. The problem of sizing a cell is formulated as a nonlinear program. A new objective function is defined so that not only the long delay is shortened but also the short delay is lengthened. We applied an extended empirical method to solve the nonlinear programming problem. A benchmarking process has been conducted at both cell level and module level. Experiments on a set of cells show that an average of 26% performance improvement was obtained by using 0.06% more area. Moreover, for a leaf cell with multiple outputs, the sizer can indeed simultaneously make the long delay paths shorter and short delay paths longer. The results of a module level experiment show that by using height slack, the maximum delay of the circuit can be reduced up to 17.7% without area penalty for the example shown.
机译:我们考虑了静态CMOS模块布局中的布局后晶体管尺寸问题。本文提出的晶体管尺寸调整器与以前的方法不同,后者在完全定制的布局上工作,并在多行自动生成的叶子单元上优化了模块布局。调整大小分为两个级别。在模块级别,根据高度松弛(可用区域)和时序松弛来选择叶单元。在单元级别上,基于从模块级别施加的宽度约束来确定单元的大小。目的是使实际到达时间与所需到达时间之差最小。单元大小的问题被公式化为非线性程序。定义了一个新的目标函数,这样不仅可以缩短长延迟,而且可以延长短延迟。我们应用了扩展的经验方法来解决非线性规划问题。在单元级别和模块级别都进行了基准测试过程。在一组单元上进行的实验表明,使用多出0.06%的面积可以平均提高26%的性能。此外,对于具有多个输出的叶单元,大小确定器的确可以同时使长延迟路径变短而使短延迟路径变长。模块级实验的结果表明,通过使用高度松弛,在所示示例中,电路的最大延迟可以减少高达17.7%,而不会造成面积损失。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号