首页> 外文期刊>IEEE Transactions on Software Engineering >The Mutation and Injection Framework: Evaluating Clone Detection Tools with Mutation Analysis
【24h】

The Mutation and Injection Framework: Evaluating Clone Detection Tools with Mutation Analysis

机译:突变和注射框架:通过突变分析评估克隆检测工具

获取原文
获取原文并翻译 | 示例

摘要

An abundant number of clone detection tools have been proposed in the literature due to the many applications and benefits of clone detection. However, there has been difficulty in the performance evaluation and comparison of these clone detectors. This is due to a lack of reliable benchmarks, and the manual efforts required to validate a large number of candidate clones. In particular, there has been a lack of a synthetic benchmark that can precisely and comprehensively measure clone-detection recall. In this paper, we present a mutation-analysis based benchmarking framework that can be used not only to evaluate the recall of clone detection tools for different types of clones but also for specific kinds of clone edits and without any manual efforts. The framework uses an editing taxonomy of clone synthesis for generating thousands of artificial clones, injects into code bases and automatically evaluates the subject clone detection tools following the mutation analysis approach. Additionally, the framework has features where custom clone pairs could also be used in the framework for evaluating the subject tools. This gives the opportunity of evaluating specialized tools for specialized contexts such as evaluating a tool's capability for the detection of complex Type-4 clones or real world clones without writing complex mutation operators for them. We demonstrate this framework by evaluating the performance of ten modern clone detection tools across two clone granularities (function and block) and three programming languages (Java, C and C#). Furthermore, we provide a variant of the framework that can be used to evaluate specialized tools such as for large gaped clone detection. Our experiments demonstrate confidence in the accuracy of our Mutation and Injection Framework when comparing against the expected results of the corresponding tools, and widely used real-world benchmarks such as Bellon's benchmark and BigCloneBench. We provide features so that most clone detection tools that report clones in the form of clone pairs (either in filename/line numbers or filename/tokens) could be evaluated using the framework.
机译:由于克隆检测的许多应用和益处,文献中提出了一种丰富的克隆检测工具。然而,这些克隆探测器的性能评估和比较难以进行困难。这是由于缺乏可靠的基准测试,以及验证大量候选克隆所需的手动努力。特别是,缺乏合成基准,可以精确地和全面地测量克隆检测召回。在本文中,我们提出了一种基于基准的基准框架,不仅可以用于评估不同类型的克隆的克隆检测工具,还可以用于特定类型的克隆编辑,而没有任何手动努力。该框架使用克隆合成的编辑分类,用于产生数千个人工克隆,注入代码碱基,并在突变分析方法后自动评估受试者克隆检测工具。此外,该框架还具有自定义克隆对的功能,也可以在用于评估主题工具的框架中使用。这为评估了专门的上下文评估了专业工具的机会,例如评估工具的能力,以检测复杂类型-4克隆或现实世界克隆,而不为它们编写复杂的突变运算符。我们通过评估跨两种克隆粒度(功能和块)和三种编程语言(Java,C和C#)来展示十个现代克隆检测工具的性能来展示该框架。此外,我们提供了一种框架的变型,其可用于评估专业的工具,例如用于大的覆盖克隆检测。我们的实验表明,当与相应工具的预期结果相比,对我们的突变和注射框架的准确性展示了信心,并广泛使用的真实基准,例如Bellon的基准和BigCloneBench等。我们提供的功能使得可以使用该框架评估以克隆对形式报告克隆对形式的克隆(在文件名/行号或文件名/令牌中)。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号