首页> 外文期刊>Soft Computing >ICA based identification of dynamical systems generating synthetic and real world time series
【24h】

ICA based identification of dynamical systems generating synthetic and real world time series

机译:基于ICA的动力系统识别,可生成合成和真实世界的时间序列

获取原文
获取原文并翻译 | 示例

摘要

Independent Component Analysis (ICA) is a recent and well known technique used to separate mixtures of signals. While in general the researchers put their attention on the type of signals and of mixing, we focus our attention on a quite general class of models which act as sources of the time series, the dynamical systems. In this paper we focus our attention on the general problem to understand the behaviour of ICA methods with respect to the time series deriving from a specific dynamical system, selecting large classes of them, and using ICA to make separation. This study gives some interesting results that are very useful both to highlight some properties related to dynamical systems and to clarify some general aspects of ICA, by using both synthetic and real data.
机译:独立分量分析(ICA)是一种新近且众所周知的技术,用于分离信号混合。通常,研究人员将注意力集中在信号的类型和混合上,而我们则将注意力集中在作为时间序列源,动态系统的相当通用的一类模型上。在本文中,我们将注意力集中在一般问题上,以了解ICA方法相对于从特定动力学系统派生的时间序列的行为,选择其中的大类并使用ICA进行分离。这项研究给出了一些有趣的结果,这些结果非常有用,既可以通过使用合成数据也可以使用真实数据来突出显示与动力学系统相关的某些属性,并阐明ICA的一些常规方面。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号