首页> 外文期刊>Soft Computing >An enhanced possibilistic C-Means clustering algorithm EPCM
【24h】

An enhanced possibilistic C-Means clustering algorithm EPCM

机译:一种改进的可能的C均值聚类算法EPCM

获取原文
获取原文并翻译 | 示例

摘要

The possibility based clustering algorithm PCM was first proposed by Krishnapuram and Keller to overcome the noise sensitivity of algorithm FCM (Fuzzy C-Means). However, PCM still suffers from the following weaknesses: (1) the clustering results are strongly dependent on parameter selection and/or initialization; (2) the clustering accuracy is often deteriorated due to its coincident clustering problem; (3) outliers can not be well labeled, which will weaken its clustering performances in real applications. In this study, in order to effectively avoid the above weaknesses, a novel enhanced PCM version (EPCM) is presented. Here, at first a novel strategy of flexible hyperspheric dichotomy is proposed which may partition a dataset into two parts: the main cluster and auxiliary cluster, and is then utilized to construct the objective function of EPCM with some novel constraints. Finally, EPCM is realized by using an alternative optimization approach. The main advantage of EPCM lies in the fact that it can not only avoid the coincident cluster problem by using the novel constraint in its objective function, but also has less noise sensitivity and higher clustering accuracy due to the introduction of the strategy of flexible hyperspheric dichotomy. Our experimental results about simulated and real datasets confirm the above conclusions.
机译:Krishnapuram和Keller首次提出了基于可能性的聚类算法PCM,以克服算法FCM(模糊C均值)的噪声敏感性。但是,PCM仍然具有以下缺点:(1)聚类结果在很大程度上取决于参数选择和/或初始化; (2)聚类精度经常由于其同时发生的聚类问题而降低; (3)离群值不能很好地标注,这会削弱其在实际应用中的聚类性能。在这项研究中,为了有效避免上述缺点,提出了一种新颖的增强型PCM版本(EPCM)。在这里,首先提出了一种灵活的超球二分法的新策略,该策略可以将数据集划分为两个部分:主聚类和辅助聚类,然后用于构建具有一些新约束的EPCM的目标函数。最后,通过使用替代优化方法来实现EPCM。 EPCM的主要优点在于它不仅可以通过在目标函数中使用新的约束来避免重合簇问题,而且由于引入了灵活的超球二分法策略,具有较小的噪声敏感性和较高的聚类精度。 。我们关于模拟和真实数据集的实验结果证实了以上结论。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号