首页> 中文期刊> 《现代电子技术》 >基于改进核可能性C均值类间极大化聚类算法

基于改进核可能性C均值类间极大化聚类算法

     

摘要

核可能性C均值(KPCM)聚类算法只考虑类内元素之间的关系,而忽略类与类之间的关系,在对边界模糊的数据集进行聚类时会出现聚类中心距离过小甚至出现聚类中心重合的现象.针对上述问题,提出一种基于改进核可能性C均值类间极大化(KMPCM)聚类算法.该算法在核可能性C均值聚类算法上引入高维特征空间的类间极大惩罚项和调控因子λ,构造新的目标函数.这样既可以合理地拉大类中心间距离,较好地避免聚类中心距离过小甚至重合的现象,使得边界处的样本得到了较好的划分,同时也考虑类内元素的关系,保持对噪声点和野值点较好的鲁棒性.通过大量实验证明,改进算法对于边界模糊的数据集的聚类效果明显优于传统聚类算法.

著录项

相似文献

  • 中文文献
  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号