首页> 外文期刊>Soft Computing >Prediction of user navigation patterns by mining the temporal web usage evolution
【24h】

Prediction of user navigation patterns by mining the temporal web usage evolution

机译:通过挖掘时间网络使用情况演变来预测用户导航模式

获取原文
获取原文并翻译 | 示例

摘要

Advances in the data mining technologies have enabled the intelligent Web abilities in various applications by utilizing the hidden user behavior patterns discovered from the Web logs. Intelligent methods for discovering and predicting user’s patterns is important in supporting intelligent Web applications like personalized services. Although numerous studies have been done on Web usage mining, few of them consider the temporal evolution characteristic in discovering web user’s patterns. In this paper, we propose a novel data mining algorithm named Temporal N-Gram (TN-Gram) for constructing prediction models of Web user navigation by considering the temporality property in Web usage evolution. Moreover, three kinds of new measures are proposed for evaluating the temporal evolution of navigation patterns under different time periods. Through experimental evaluation on both of real-life and simulated datasets, the proposed TN-Gram model is shown to outperform other approaches like N-gram modeling in terms of prediction precision, in particular when the web user’s navigating behavior changes significantly with temporal evolution.
机译:数据挖掘技术的进步已经通过利用从Web日志中发现的隐藏用户行为模式,在各种应用程序中启用了智能Web功能。发现和预测用户模式的智能方法对于支持个性化服务等智能Web应用程序非常重要。尽管已进行了大量有关Web使用情况挖掘的研究,但很少有人在发现Web用户的模式时考虑时间演变特征。在本文中,我们提出了一种新的数据挖掘算法,称为时间性N-Gram(TN-Gram),该算法通过考虑Web使用演变中的时间性来构建Web用户导航的预测模型。此外,提出了三种新的方法来评估不同时间段导航模式的时间演变。通过对真实数据集和模拟数据集的实验评估,所提出的TN-Gram模型在预测精度方面表现出优于其他方法(例如N-gram模型),尤其是当网络用户的导航行为随时间演变而显着变化时。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号