首页> 外文期刊>Soft Computing >Learning consistent, complete and compact sets of fuzzy rules in conjunctive normal form for regression problems
【24h】

Learning consistent, complete and compact sets of fuzzy rules in conjunctive normal form for regression problems

机译:以合取范式学习一致,完整和紧凑的模糊规则集,以解决回归问题

获取原文
获取原文并翻译 | 示例

摘要

When a flexible fuzzy rule structure such as those with antecedent in conjunctive normal form is used, the interpretability of the obtained fuzzy model is significantly improved. However, some important problems appear related to the interaction among this set of rules. Indeed, it is relatively easy to get inconsistencies, lack of completeness, redundancies, etc. Generally, these properties are ignored or mildly faced. This paper, however, focuses on the design of a multiobjective genetic algorithm that properly considers all these properties thus ensuring an effective search space exploration and generation of highly legible and accurate fuzzy models.
机译:当使用灵活的模糊规则结构(例如,具有合取正态形式的先行规则)时,显着提高了所获得的模糊模型的可解释性。但是,一些重要的问题似乎与这套规则之间的相互作用有关。确实,出现不一致,缺乏完整性,冗余等相对容易。通常,这些属性将被忽略或轻度面对。但是,本文着重于设计一种多目标遗传算法,该算法适当考虑了所有这些属性,从而确保了有效的搜索空间探索并生成了清晰易读且准确的模糊模型。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号