首页> 外文期刊>Soft Computing - A Fusion of Foundations, Methodologies and Applications >Memetic algorithms based on local search chains for large scale continuous optimisation problems: MA-SSW-Chains
【24h】

Memetic algorithms based on local search chains for large scale continuous optimisation problems: MA-SSW-Chains

机译:基于局部搜索链的大规模连续优化问题的模因算法:MA-SSW-Chains

获取原文
获取原文并翻译 | 示例

摘要

Nowadays, large scale optimisation problems arise as a very interesting field of research, because they appear in many real-world problems (bio-computing, data mining, etc.). Thus, scalability becomes an essential requirement for modern optimisation algorithms. In a previous work, we presented memetic algorithms based on local search chains. Local search chain concerns the idea that, at one stage, the local search operator may continue the operation of a previous invocation, starting from the final configuration reached by this one. Using this technique, it was presented a memetic algorithm, MA-CMA-Chains, using the CMA-ES algorithm as its local search component. This proposal obtained very good results for continuous optimisation problems, in particular with medium-size (with up to dimension 50). Unfortunately, CMA-ES scalability is restricted by several costly operations, thus MA-CMA-Chains could not be successfully applied to large scale problems. In this article we study the scalability of memetic algorithms based on local search chains, creating memetic algorithms with different local search methods and comparing them, considering both the error values and the processing cost. We also propose a variation of Solis Wets method, that we call Subgrouping Solis Wets algorithm. This local search method explores, at each step of the algorithm, only a random subset of the variables. This subset changes after a certain number of evaluations. Finally, we propose a new memetic algorithm based on local search chains for high dimensionality, MA-SSW-Chains, using the Subgrouping Solis Wets’ algorithm as its local search method. This algorithm is compared with MA-CMA-Chains and different reference algorithms, and it is shown that the proposal is fairly scalable and it is statistically very competitive for high-dimensional problems.
机译:如今,大规模优化问题作为一个非常有趣的研究领域而出现,因为它们出现在许多现实世界的问题(生物计算,数据挖掘等)中。因此,可伸缩性成为现代优化算法的基本要求。在先前的工作中,我们提出了基于本地搜索链的模因算法。本地搜索链涉及以下想法:在一个阶段,本地搜索操作员可以从上一次调用的最终配置开始,继续进行先前的调用。使用这种技术,提出了一种模因算法MA-CMA-Chains,它使用CMA-ES算法作为其本地搜索组件。对于连续优化问题,尤其对于中等尺寸(最大尺寸为50),该建议获得了非常好的结果。不幸的是,CMA-ES的可伸缩性受到数个昂贵操作的限制,因此MA-CMA-Chains无法成功地应用于大规模问题。在本文中,我们研究了基于局部搜索链的模因算法的可伸缩性,创建了具有不同局部搜索方法的模因算法,并在考虑了误差值和处理成本的情况下进行了比较。我们还提出了Solis Wets方法的一种变体,我们称其为Subgrouping Solis Wets算法。这种局部搜索方法在算法的每个步骤中仅探索变量的随机子集。经过一定数量的评估后,此子集会更改。最后,我们以子集Solis Wets算法为本地搜索方法,提出了一种基于局部搜索链的高维新模因算法MA-SSW-Chains。将该算法与MA-CMA-Chains和不同的参考算法进行了比较,结果表明该提议具有相当的可扩展性,并且在统计上对高维问题具有很强的竞争力。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号