首页> 外文期刊>Soft Computing - A Fusion of Foundations, Methodologies and Applications >Genetic programming with one-point crossover and subtree mutation for effective problem solving and bloat control
【24h】

Genetic programming with one-point crossover and subtree mutation for effective problem solving and bloat control

机译:具有单点交叉和子树突变的遗传编程,可有效解决问题并控制膨胀

获取原文
获取原文并翻译 | 示例

摘要

Genetic programming (GP) is one of the most widely used paradigms of evolutionary computation due to its ability to automatically synthesize computer programs and mathematical expressions. However, because GP uses a variable length representation, the individuals within the evolving population tend to grow rapidly without a corresponding return in fitness improvement, a phenomenon known as bloat. In this paper, we present a simple bloat control strategy for standard tree-based GP that achieves a one order of magnitude reduction in bloat when compared with standard GP on benchmark tests, and practically eliminates bloat on two real-world problems. Our proposal is to substitute standard subtree crossover with the one-point crossover (OPX) developed by Poli and Langdon (Second online world conference on soft computing in engineering design and manufacturing, Springer, Berlin (1997)), while maintaining all other GP aspects standard, particularly subtree mutation. OPX was proposed for theoretical purposes related to GP schema theorems, however since it curtails exploration during the search it has never achieved widespread use. In our results, on the other hand, we are able to show that OPX can indeed perform an effective search if it is coupled with subtree mutation, thus combining the bloat control capabilities of OPX with the exploration provided by standard mutation.
机译:遗传编程(GP)由于具有自动合成计算机程序和数学表达式的能力,因此是进化计算最广泛使用的范例之一。但是,由于GP使用可变长度表示法,因此不断发展的群体中的个体趋向于快速成长,而身体状况却没有相应的改善,这种现象称为膨胀。在本文中,我们为标准的基于树的GP提出了一种简单的膨胀控制策略,与基准测试中的标准GP相比,膨胀率降低了一个数量级,并且实际上消除了两个实际问题的膨胀。我们的建议是用Poli和Langdon开发的单点交叉(OPX)代替标准子树交叉(OPX)(第二届在线世界工程设计和制造中的软计算大会,柏林,1997年),同时保留所有其他GP方面的知识。标准,尤其是子树突变。提出OPX是出于与GP模式定理相关的理论目的,但是由于它限制了搜索过程中的探索,因此从未得到广泛使用。另一方面,在我们的结果中,我们能够证明,如果OPX与子树突变相结合,则确实可以执行有效的搜索,从而将OPX的膨胀控制功能与标准突变提供的探索结合起来。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号