首页> 外文期刊>Neurocomputing >Studying bloat control and maintenance of effective code in linear genetic programming for symbolic regression
【24h】

Studying bloat control and maintenance of effective code in linear genetic programming for symbolic regression

机译:研究线性遗传规划中用于符号回归的膨胀控制和有效代码的维护

获取原文
获取原文并翻译 | 示例

摘要

Linear Genetic Programming (LGP) is an Evolutionary Computation algorithm, inspired in the Genetic Programming (GP) algorithm. Instead of using the standard tree representation of GP, LGP evolves a linear program, which causes a graph-based data flow with code reuse. LGP has been shown to outperform GP in several problems, including Symbolic Regression (SReg), and to produce simpler solutions. In this paper, we propose several LGP variants and compare them with a traditional LGP algorithm on a set of benchmark SReg functions from the literature. The main objectives of the variants were to both control bloat and privilege useful code in the population. Here we evaluate their effects during the evolution process and in the quality of the final solutions. Analysis of the results showed that bloat control and effective code maintenance worked, but they did not guarantee improvement in solution quality. (C) 2015 Elsevier B.V. All rights reserved.
机译:线性遗传规划(LGP)是一种进化计算算法,其灵感来自遗传规划(GP)算法。 LGP代替了使用GP的标准树表示法,而是开发了一个线性程序,该程序会导致具有代码重用的基于图形的数据流。 LGP在某些问题上(包括符号回归(SReg))表现出优于GP的优势,并且可以提供更简单的解决方案。在本文中,我们提出了几种LGP变体,并将它们与传统的LGP算法在文献中的一组基准SReg函数上进行了比较。这些变体的主要目标是控制总体中的膨胀和特权有用代码。在这里,我们评估了它们在进化过程中以及最终解决方案质量中的作用。结果分析表明,膨胀控制和有效的代码维护有效,但不能保证解决方案质量的提高。 (C)2015 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号