首页> 外文期刊>Soft Computing - A Fusion of Foundations, Methodologies and Applications >A fuzzy regression model based on distances and random variables with crisp input and fuzzy output data: a case study in biomass production
【24h】

A fuzzy regression model based on distances and random variables with crisp input and fuzzy output data: a case study in biomass production

机译:基于距离和具有随机输入和模糊输出数据的随机变量的模糊回归模型:以生物质生产为例

获取原文
获取原文并翻译 | 示例

摘要

Least-squares technique is well-known and widely used to determine the coefficients of a explanatory model from observations based on a concept of distance. Traditionally, the observations consist of pairs of numeric values. However, in many real-life problems, the independent or explanatory variable can be observed precisely (for instance, the time) and the dependent or response variable is usually described by approximate values, such as “about £300pounds300” or “approximately $500”, instead of exact values, due to sources of uncertainty that may affect the response. In this paper, we present a new technique to obtain fuzzy regression models that consider triangular fuzzy numbers in the response variable. The procedure solves linear and non-linear problems and is easy to compute in practice and may be applied in different contexts. The usefulness of the proposed method is illustrated using simulated and real-life examples.
机译:最小二乘技术是众所周知的,并广泛用于根据距离的概念根据观察结果确定解释模型的系数。传统上,观测值由成对的数值组成。但是,在许多现实生活中的问题中,可以精确地观察到自变量或解释变量(例如时间),并且因变量或响应变量通常用近似值来描述,例如“约£300英镑300”或“约$ 500” ,而不是确切的值,因为不确定性可能会影响响应。在本文中,我们提出了一种获得模糊回归模型的新技术,该模型考虑了响应变量中的三角模糊数。该程序解决了线性和非线性问题,在实践中易于计算,可以在不同的情况下应用。通过仿真和实际例子说明了该方法的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号