首页> 外文期刊>Soft Computing - A Fusion of Foundations, Methodologies and Applications >High performance memetic algorithm particle filter for multiple object tracking on modern GPUs
【24h】

High performance memetic algorithm particle filter for multiple object tracking on modern GPUs

机译:用于现代GPU上多目标跟踪的高性能模因算法粒子滤波器

获取原文
获取原文并翻译 | 示例

摘要

This work presents an effective approach to visual tracking using a graphics processing unit (GPU) for computation purposes. In order to get a performance improvement against other platforms it is convenient to select proper algorithms such as population-based ones. They expose a parallel-friendly nature needing from many independent evaluations that map well to the parallel architecture of the GPU. To this end we propose a particle filter (PF) hybridized with a memetic algorithm (MA) to produce a MAPF tracking algorithm for single and multiple object tracking problems. Previous experimental results demonstrated that the MAPF algorithm showed more accurate tracking results than the standard PF, and now we extend those results with the first complete adaptation of the PF and the MAPF for visual tracking to the NVIDIA CUDA architecture. Results show a GPU speedup between 5×–16× for different configurations.
机译:这项工作提出了使用图形处理单元(GPU)进行视觉跟踪的有效方法。为了相对于其他平台获得性能改进,选择适当的算法(例如基于种群的算法)非常方便。它们揭示了许多独立评估需要的并行友好性质,这些独立评估很好地映射到了GPU的并行体系结构。为此,我们提出了一种与模因算法(MA)混合的粒子滤波器(PF),以产生针对单个和多个对象跟踪问题的MAPF跟踪算法。先前的实验结果表明MAPF算法比标准PF显示出更准确的跟踪结果,现在我们通过对PF和MAPF进行首次完全改编,将这些结果扩展到NVIDIA CUDA体系结构进行视觉跟踪。结果显示,不同配置的GPU速度提高了5倍至16倍。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号