首页> 外文期刊>Smart structures and systems >Nonlinear modelling and analysis of thin piezoelectric plates: Buckling and post-buckling behaviour
【24h】

Nonlinear modelling and analysis of thin piezoelectric plates: Buckling and post-buckling behaviour

机译:压电薄板的非线性建模和分析:屈曲和后屈曲行为

获取原文
获取原文并翻译 | 示例

摘要

In the present paper we discuss the stability and the post-buckling behaviour of thin piezoelastic plates. The first part of the paper is concerned with the modelling of such plates. We discuss the constitutive modelling, starting with the three-dimensional constitutive relations within Voigt's linearized theory of piezoelasticity. Assuming a plane state of stress and a linear distribution of the strains with respect to the thickness of the thin plate, two-dimensional constitutive relations are obtained. The specific form of the linear thickness distribution of the strain is first derived within a fully geometrically nonlinear formulation, for which a Finite Element implementation is introduced. Then, a simplified theory based on the von Karman and Tsien kinematic assumption and the Berger approximation is introduced for simply supported plates with polygonal planform. The governing equations of this theory are solved using a Galerkin procedure and cast into a non-dimensional formulation. In the second part of the paper we discuss the stability and the post-buckling behaviour for single term and multi term solutions of the non-dimensional equations. Finally, numerical results are presented using the Finite Element implementation for the fully geometrically nonlinear theory. The results from the simplified von Karman and Tsien theory are then verified by a comparison with the numerical solutions.
机译:在本文中,我们讨论了压电薄板的稳定性和屈曲后行为。本文的第一部分涉及这种板的建模。我们从Voigt的压电弹性线性化理论中的三维本构关系开始讨论本构模型。假设应力的平面状态和应变相对于薄板厚度的线性分布,则获得了二维本构关系。应变的线性厚度分布的特定形式首先在完全几何​​非线性的公式中得出,为此引入了有限元实现。然后,基于冯·卡曼和钱学运动学假设以及伯杰近似的简化理论被引入到具有多边形平面形状的简单支撑板中。该理论的控制方程使用Galerkin程序求解,并转化为无量纲公式。在本文的第二部分中,我们讨论了无量纲方程单项和多项解的稳定性和屈曲后行为。最后,使用有限元实现的完全几何非线性理论给出了数值结果。然后,通过与数值解进行比较,验证了简化的冯·卡门理论和钱学理论的结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号