首页> 外文期刊>Smart structures and systems >Convolutional neural network-based damage detection method for building structures
【24h】

Convolutional neural network-based damage detection method for building structures

机译:基于卷积神经网络的构建结构损伤检测方法

获取原文
获取原文并翻译 | 示例

摘要

This study presents a damage detection method based on modal responses for building structures using convolutional neural networks (CNNs). The modal responses used in the method are obtained from the dynamic responses, which are measured in a building structure under ambient excitations; these are then transformed to a modal participation ratio (MPR) value for a measuring point and mode. As modal responses vary after damages in the structures, the MPR for a specific location and mode also changes. Thus, in this study, MPR variations, which can be obtained by comparing the MPRs of damaged and healthy structures, are utilized for damage detection without the need for identification of modal parameters. Since MPRs are derived for the number of measuring points (iN ) in the structure as well as the same number of modes (iN ), the MPRs and MPR variations can be arranged as an iN × iN matrix. This low-dimensional MPR variations set is used as the input map of the presented CNN architecture and information about damage locations and severities of the target structure is set as the output of the CNN. The presented CNN is trained for establishing the relationship between MPR variations and damage information and utilized to estimate the damage. The presented damage detection method is applied to numerical examples for two multiple degrees of freedoms and a three-dimensional ASCE benchmark numerical model. Training datasets created from damage scenarios assuming changes in the stiffness are used to train the CNN and the performance of this CNN is verified. Finally, this study examines how variations in the operator size and number of layers in the CNN architecture affect the damage detection performance of CNNs.
机译:本研究提出了一种基于使用卷积神经网络(CNN)构建结构的模态响应的损伤检测方法。该方法中使用的模态响应是从动态响应获得的,在环境激励下在建筑物结构中测量;然后将这些转换为测量点和模式的模态参与率(MPR)值。由于模态响应在结构中损坏后变化,因此特定位置和模式的MPR也变化。因此,在本研究中,通过比较损坏和健康结构的MPRS可以获得的MPR变化,用于损坏检测而不需要识别模态参数。由于MPRS被导出在结构中的测量点(& i> n)的数量以及相同数量的模式(& i& n),因此MPRS和MPR变化可以被布置为& i& n×& i& n矩阵。该低维MPR变型组用作所示的CNN架构的输入映​​射,以及关于目标结构的损坏位置的信息被设置为CNN的输出。呈现的CNN被培训,用于建立MPR变化与损坏信息之间的关系,并利用来估计损坏。呈现的损伤检测方法应用于两个多程度的自由度和三维ASCE基准数值模型的数值例。假设刚度变化的损坏方案创建的训练数据集用于训练CNN,并且验证了该CNN的性能。最后,本研究检查了CNN架构中的操作员大小和层数的变化如何影响CNN的损伤检测性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号