首页> 外文期刊>Smart Grid, IEEE Transactions on >Online Scheduling of a Residential Microgrid via Monte-Carlo Tree Search and a Learned Model
【24h】

Online Scheduling of a Residential Microgrid via Monte-Carlo Tree Search and a Learned Model

机译:通过Monte-Carlo树搜索和学习模型在线调度

获取原文
获取原文并翻译 | 示例

摘要

The uncertainty of distributed renewable energy brings significant challenges to economic operation of microgrids. Conventional online optimization approaches require a forecast model. However, accurately forecasting the renewable power generations is still a tough task. To achieve online scheduling of a residential microgrid (RM) that does not need a forecast model to predict the future PV/wind and load power sequences, this article investigates the usage of reinforcement learning (RL) approach to tackle this challenge. Specifically, based on the recent development of Model-Based Reinforcement Learning, MuZero (Schrittwieser et al., 2019) we investigate its application to the RM scheduling problem. To accommodate the characteristics of the RM scheduling application, an optimization framework that combines the model-based RL agent with the mathematical optimization technique is designed, and long short-term memory (LSTM) units are adopted to extract features from the past renewable generation and load sequences. At each time step, the optimal decision is obtained by conducting Monte-Carlo tree search (MCTS) with a learned model and solving an optimal power flow sub-problem. In this way, this approach can sequentially make operational decisions online without relying on a forecast model. The numerical simulation results demonstrate the effectiveness of the proposed algorithm.
机译:分布式可再生能源的不确定性为微电网经济运行带来了重大挑战。传统的在线优化方法需要预测模型。但是,准确预测可再生动力世代仍然是一项艰巨的任务。为了实现不需要预测模型的住宅微电网(RM)的在线调度,以预测未来的光伏/风和负载功率序列,本文调查了加强学习(RL)方法来解决这一挑战的方法。具体而言,基于最近基于模型的强化学习的发展,Muzero(Schrittwieser等,2019)我们调查其在RM调度问题上的应用。为了适应RM调度应用的特性,设计了将基于模型的RL代理与数学优化技术相结合的优化框架,并且采用了长短的短期存储器(LSTM)单元来提取过去可再生生成的特征和加载序列。在每个时间步骤中,通过使用学习模型进行Monte-Carlo树搜索(MCT)来获得最佳决定并解决最佳的功率流子问题。通过这种方式,在不依赖于预测模型的情况下,这种方法可以在线顺序进行操作决策。数值模拟结果证明了所提出的算法的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号