首页> 外文期刊>Smart Grid, IEEE Transactions on >Robust Recovery of Missing Data in Electricity Distribution Systems
【24h】

Robust Recovery of Missing Data in Electricity Distribution Systems

机译:可靠地恢复配电系统中丢失的数据

获取原文
获取原文并翻译 | 示例

摘要

The advanced operation of future electricity distribution systems is likely to require significant observability of the different parameters of interest (e.g., demand, voltages, currents, etc.). Ensuring completeness of data is, therefore, paramount. In this context, an algorithm for recovering missing state variable observations in electricity distribution systems is presented. The proposed method exploits the low rank structure of the state variables via a matrix completion approach incorporating prior knowledge in the form of second order statistics. Essentially, the recovery method combines nuclear norm minimization with Bayesian estimation. The performance of the new algorithm is compared to the information-theoretic limits and tested through simulations using real data of an urban low voltage distribution system. The impact of the prior knowledge is analyzed when a mismatched covariance is used and under a Markovian sampling that introduces structure in the observation pattern. Numerical results demonstrate that the proposed algorithm is robust and outperforms existing state of the art algorithms.
机译:未来配电系统的高级运行可能需要对相关的不同参数(例如,需求,电压,电流等)进行显着观察。因此,确保数据的完整性至关重要。在这种情况下,提出了一种用于恢复配电系统中缺失状态变量观测值的算法。所提出的方法通过矩阵完成方法来利用状态变量的低秩结构,该方法以二阶统计的形式结合了先验知识。本质上,恢复方法将核规范最小化与贝叶斯估计结合在一起。将新算法的性能与信息理论极限进行比较,并使用城市低压配电系统的真实数据通过仿真进行测试。当使用不匹配的协方差时,以及在将马尔可夫样本引入观察模式的情况下,分析先验知识的影响。数值结果表明,该算法具有较强的鲁棒性,并且优于现有的现有算法。

著录项

  • 来源
    《Smart Grid, IEEE Transactions on》 |2019年第4期|4057-4067|共11页
  • 作者单位

    Univ Sheffield, Dept Automat Control & Syst Engn, Sheffield S1 3JD, S Yorkshire, England;

    Univ Sheffield, Dept Automat Control & Syst Engn, Sheffield S1 3JD, S Yorkshire, England|Princeton Univ, Dept Elect Engn, Princeton, NJ 08540 USA;

    Princeton Univ, Dept Elect Engn, Princeton, NJ 08540 USA|CITI, F-69621 Villeurbanne, France;

    Univ Melbourne, Dept Elect & Elect Engn, Melbourne, Vic 3010, Australia|Univ Manchester, Sch Elect & Elect Engn, Manchester M13 9PL, Lancs, England;

    Univ Sheffield, Dept Automat Control & Syst Engn, Sheffield S1 3JD, S Yorkshire, England;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Recovery of missing data; distribution systems; matrix completion; Bayesian estimation;

    机译:丢失数据的恢复;分配系统;矩阵完成;贝叶斯估计;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号