首页> 外文期刊>Smart Grid, IEEE Transactions on >Operating Expense Optimization for EVs in Multiple Depots and Charge Stations Environment Using Evolutionary Heuristic Method
【24h】

Operating Expense Optimization for EVs in Multiple Depots and Charge Stations Environment Using Evolutionary Heuristic Method

机译:基于进化启发式方法的多车场,充电站环境电动汽车运营费用优化

获取原文
获取原文并翻译 | 示例

摘要

In this paper, an operating cost optimization problem of electric vehicles (EVs) is studied in a large-scale logistics and transportation network. An extended EV operational model is proposed for a multiple depots and charge stations environment where practical constraints are included. In the proposed model, new practical mathematical schemes are proposed to describe the constraints. Then, a new two-step clustering heuristic optimization (TCHO) method is developed to minimize the total operating cost of the EV routes while satisfying all the constraints. In the first step, a novel heuristic edge sharing assigning algorithm is designed to split the large scale logistic network into different clusters. In the second step, a new shortest path heuristic method is developed to minimize the total expense of the EV routes for each cluster. Furthermore, based on the TCHO, a novel discrete differential evolution-TCHO is proposed to improve the performance on solving the problem. The effectiveness of the proposed models and methods is verified by comprehensive numerical simulations where the well-known vehicle routing problem benchmarks are applied.
机译:本文研究了大规模物流运输网络中电动汽车的运营成本优化问题。提出了针对包含实际约束的多个仓库和充电站环境的扩展EV操作模型。在提出的模型中,提出了新的实用数学方案来描述约束。然后,开发了一种新的两步聚类启发式优化(TCHO)方法,以在满足所有约束的同时将EV路线的总运营成本降至最低。第一步,设计一种新颖的启发式边缘共享分配算法,以将大规模物流网络划分为不同的集群。第二步,开发了一种新的最短路径启发式方法,以最大程度地减少每个集群的EV路线的总费用。此外,基于TCHO,提出了一种新颖的离散差分进化-TCHO,以提高解决问题的性能。所提出的模型和方法的有效性通过综合数值模拟得到了验证,其中应用了著名的车辆路径问题基准。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号