首页> 外文期刊>Smart Grid, IEEE Transactions on >Front-End Electronic Circuit Topology Analysis for Model-Driven Classification and Monitoring of Appliance Loads in Smart Buildings
【24h】

Front-End Electronic Circuit Topology Analysis for Model-Driven Classification and Monitoring of Appliance Loads in Smart Buildings

机译:用于模型驱动的分类和监视智能建筑中的设备负载的前端电子电路拓扑分析

获取原文
获取原文并翻译 | 示例

摘要

This paper presents a nonintrusive appliance load monitoring (NILM) strategy for energy management systems in smart buildings. Compared to purely data-driven methods, this paper introduces a prior-knowledge-based model-driven framework. The prior-knowledge includes front-end power supply circuit identification, electrical operating principle, and customer usage. The focus of this paper is on a comprehensive study on front-end power supply circuit topologies and on the commercial power supply market. The former forms the basis of the proposed hierarchical taxonomy from the power electronics' point of view, and the latter study guarantees that the proposed taxonomy represents the majority of appliance loads in the real world. Under the proposed taxonomy, the advantage of the model-driven hierarchical feature extraction is discussed, and initial analysis shows that optimized features can be obtained from this method, which drives a much simpler AND more feasible solution in differentiating the subtle differences between similar loads.
机译:本文提出了一种用于智能建筑能源管理系统的非侵入式设备负载监控(NILM)策略。与纯数据驱动的方法相比,本文介绍了一种基于先验知识的模型驱动框架。先验知识包括前端电源电路标识,电气工作原理和客户使用情况。本文的重点是对前端电源电路拓扑和商用电源市场进行全面研究。从电力电子学的角度来看,前者构成了拟议的分类法的基础,而后者的研究保证了拟议的分类法代表了现实世界中大多数电器负载。在提出的分类法下,讨论了模型驱动的分层特征提取的优点,并且初步分析表明,可以从该方法中获得优化的特征,从而为区分相似负载之间的细微差别提供了一种更简单,更可行的解决方案。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号