首页> 外文期刊>Simulation >Objective evaluation of prediction strategies for optimization-based motion cueing
【24h】

Objective evaluation of prediction strategies for optimization-based motion cueing

机译:基于优化的运动提示预测策略的客观评估

获取原文
获取原文并翻译 | 示例

摘要

Optimization-based motion cueing algorithms based on model predictive control have been recently implemented to reproduce the motion of a car within the limited workspace of a driving simulator. These algorithms require a reference of the future vehicle motion to compute a prediction of the system response. Assumptions regarding the future reference signals must be made in order to develop effective prediction strategies. However, it remains unclear how the prediction of future vehicle dynamics influences the quality of the motion cueing. In this study two prediction strategies are considered. Oracle: the ideal prediction strategy that knows exactly what the future reference is going to be. Constant: a prediction strategy that ignores every future change and keeps the current vehicle's linear accelerations and angular velocities constant. The two prediction strategies are used to reproduce a sequence of maneuvers between 0 and 50 km/h. A comparative analysis is carried out to objectively evaluate the influence of the prediction strategies on motion cueing quality. Dedicated indicators of correlation, delay and absolute error are used to compare the effects of the adopted prediction on simulator motion. Also the motion cueing mechanisms adopted by the different conditions are analyzed, together with the usage of simulator workspace. While the constant strategy provided reasonable cueing quality, the results show that knowledge of the future vehicle trajectory reduces the delay and improves correlation with the reference trajectory, it allows the combined usage of different motion cueing mechanisms and increases the usage of workspace.
机译:最近已经实现了基于模型预测控制的基于优化的运动提示算法以再现汽车在驾驶模拟器的有限工作空间内的汽车的运动。这些算法需要将来的车辆运动的参考来计算系统响应的预测。必须对未来参考信号进行假设以开发有效的预测策略。然而,仍然尚不清楚未来车辆动态的预测如何影响运动提示的质量。在这项研究中,考虑了两种预测策略。 Oracle:完全了解未来参考的理想预测策略。常数:一种忽略每个未来变化的预测策略,并保持当前车辆的线性加速度和角速度常数。这两种预测策略用于再现0到50 km / h之间的一系列机动。进行了比较分析以客观地评估预测策略对运动提示质量的影响。用于相关性的专用指示符,延迟和绝对误差来比较采用预测对模拟器运动的影响。此外,分析了不同条件采用的运动提示机制,以及模拟器工作空间的使用情况。虽然恒定策略提供了合理的提示质量,但结果表明,未来的车辆轨迹的知识降低了延迟并提高了与参考轨迹的相关性,允许不同运动提示机制的组合使用并增加了工作空间的使用。

著录项

  • 来源
    《Simulation》 |2019年第8期|707-724|共18页
  • 作者单位

    Delft Univ Technol PhD Program Biomech Engn Delft Netherlands|Siemens PLM Software Leuven Belgium;

    Delft Univ Technol PhD Program Biomech Engn Delft Netherlands|Max Planck Inst Biol Cybernet Tubingen Germany;

    Max Planck Inst Biol Cybernet Mot Percept & Simulat Res Grp Tubingen Germany|Virtual Vehicle Res Ctr Graz Austria;

    Siemens PLM Software Simulat & Test Solut Business Segment Leuven Belgium;

    Delft Univ Technol PhD Program Biomech Engn Delft Netherlands;

    Max Planck Inst Biol Cybernet Tubingen Germany;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Driving; simulation; motion; cueing; prediction;

    机译:驾驶;模拟;动作;提示;预测;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号