首页> 外文期刊>Signal processing >Linear recursive discrete-time estimators using covariance information under uncertain observations
【24h】

Linear recursive discrete-time estimators using covariance information under uncertain observations

机译:不确定观测下使用协方差信息的线性递归离散时间估计

获取原文
获取原文并翻译 | 示例

摘要

This paper, using the covariance information, proposes recursive least-squares (RLS) filtering and fixed-point smoothing algorithms with uncertain observations in linear discrete-time stochastic systems. The observation equation is given by y(k) =γ(k)Hx(k) + υ(k), where {γ(k)} is a binary switching sequence with conditional probability distribution verifying Eq. (3). This observation equation is suitable for modeling the transmission of data in multichannels as in remote sensing situations. The estimators require the information of the system matrix Φ concerning the state variable which generates the signal, the observation vector H, the crossvariance function K_(xz)(k,k) of the state variable with the signal, the variance R(k) of the white observation noise, the observed values, the probability p(k)=P{γ(k) =1} that the signal exists in the uncertain observation equation and the (2,2) element [P(k|j)]_(2,2) of the conditional probability matrix of γ(k), given γ(j).
机译:本文利用协方差信息,提出了在线性离散时间随机系统中具有不确定观测值的递归最小二乘(RLS)滤波和定点平滑算法。观测方程由y(k)=γ(k)Hx(k)+υ(k)给出,其中{γ(k)}是具有条件概率分布验证方程的二元切换序列。 (3)。该观测方程式适合于模拟遥感情况下多通道数据传输。估计器需要系统矩阵Φ的信息,该信息涉及生成信号的状态变量,观察向量H,状态变量与信号的交叉方差函数K_(xz)(k,k),方差R(k)白观测噪声,观测值,信号存在于不确定观测方程中的概率p(k)= P {γ(k)= 1}和(2,2)元素[P(k | j)在给定γ(j)的情况下,γ(k)的条件概率矩阵的] _(2,2)。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号