首页> 外文期刊>Signal processing >Fast approximation of nonlinearities for improving inversion algorithms of PNL mixtures and Wiener systems
【24h】

Fast approximation of nonlinearities for improving inversion algorithms of PNL mixtures and Wiener systems

机译:快速逼近非线性以改善PNL混合物和Wiener系统的反演算法

获取原文
获取原文并翻译 | 示例

摘要

This paper proposes a very fast method for blindly approximating a nonlinear mapping which transforms a sum of random variables. The estimation is surprisingly good even when the basic assumption is not satisfied. We use the method for providing a good initialization for inverting post-nonlinear mixtures and Wiener systems. Experiments show that speed of the algorithm is strongly improved and the asymptotic performance is preserved with a very low extra computational cost.
机译:本文提出了一种盲目逼近非线性映射的非常快的方法,该方法可以转换随机变量的总和。即使不满足基本假设,该估计也是出乎意料的好。我们使用该方法为反相后的非线性混合物和Wiener系统提供良好的初始化。实验表明,该算法的速度得到了极大的提高,并且以非常低的额外计算成本来保持渐近性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号