首页> 外文期刊>Signal processing >Adaptive relevance feedback based on Bayesian inference for image retrieval
【24h】

Adaptive relevance feedback based on Bayesian inference for image retrieval

机译:基于贝叶斯推理的自适应相关反馈图像检索

获取原文
获取原文并翻译 | 示例

摘要

Relevance feedback can be considered as a Bayesian classification problem. For retrieving images efficiently, an adaptive relevance feedback approach based on the Bayesian inference, rich get richer (RGR), is proposed. If the feedback images in current iteration are consistent with the previous ones, the images that are similar to the query target are assigned to high probabilities. Therefore, the images that are similar to the user's ideal target are emphasized step by step. The experiments showed that the average precision of RGR improves 5-20% on each interaction compared with non-RGR. When compared with MARS, the proposed approach greatly reduces the user's efforts for composing a query and captures user's intention efficiently.
机译:相关性反馈可以视为贝叶斯分类问题。为了有效地检索图像,提出了一种基于贝叶斯推理的富人富人(RGR)的自适应相关反馈方法。如果当前迭代中的反馈图像与先前的图像一致,则将与查询目标相似的图像分配给高概率。因此,逐步强调与用户理想目标相似的图像。实验表明,与非RGR相比,每次相互作用RGR的平均精度提高了5-20%。与MARS相比,所提出的方法大大减少了用户编写查询的工作量,并有效地捕获了用户的意图。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号