首页> 外文OA文献 >Content-based image retrieval with relevance feedback using adaptive processing of tree-structure image representation
【2h】

Content-based image retrieval with relevance feedback using adaptive processing of tree-structure image representation

机译:利用树结构图像表示的自适应处理,基于相关反馈的基于内容的图像检索

摘要

Content-based image retrieval has become an essential technique in multimedia data management. However, due to the difficulties and complications involved in the various image processing tasks, a robust semantic representation of image content is still very difficult (if not impossible) to achieve. In this paper, we propose a novel content-based image retrieval approach with relevance feedback using adaptive processing of tree-structure image representation. In our approach, each image is first represented with a quad-tree, which is segmentation free. Then a neural network model with the Back-Propagation Through Structure (BPTS) learning algorithm is employed to learn the tree-structure representation of the image content. This approach that integrates image representation and similarity measure in a single framework is applied to the relevance feedback of the content-based image retrieval. In our approach, an initial ranking of the database images is first carried out based on the similarity between the query image and each of the database images according to global features. The user is then asked to categorize the top retrieved images into similar and dissimilar groups. Finally, the BPTS neural network model is used to learn the user's intention for a better retrieval result. This process continues until satisfactory retrieval results are achieved. In the refining process, a fine similarity grading scheme can also be adopted to improve the retrieval performance. Simulations on texture images and scenery pictures have demonstrated promising results which compare favorably with the other relevance feedback methods tested.
机译:基于内容的图像检索已成为多媒体数据管理中的一项必不可少的技术。然而,由于各种图像处理任务所涉及的困难和复杂性,图像内容的鲁棒语义表示仍然非常难以实现(如果不是不可能的话)。在本文中,我们提出了一种新的基于内容的图像检索方法,该方法利用树结构图像表示的自适应处理进行相关性反馈。在我们的方法中,首先用四叉树表示每个图像,该四叉树是无分割的。然后,采用具有反向传播结构(BPTS)学习算法的神经网络模型来学习图像内容的树结构表示。这种将图像表示和相似性度量集成在单个框架中的方法应用于基于内容的图像检索的相关性反馈。在我们的方法中,首先根据查询图像与每个数据库图像之间的相似度,根据全局特征对数据库图像进行初始排名。然后,要求用户将检索到的顶部图像分类为相似和不相似的组。最后,使用BPTS神经网络模型学习用户的意图以获得更好的检索结果。这个过程一直持续到获得令人满意的检索结果为止。在细化过程中,也可以采用精细的相似度分级方案来提高检索性能。对纹理图像和风景图片的仿真已显示出令人鼓舞的结果,与测试的其他相关反馈方法相比,该结果令人满意。

著录项

  • 作者

    Wang Z; Chi Z; Feng D; Tsoi AC;

  • 作者单位
  • 年度 2003
  • 总页数
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号