首页> 外文期刊>Signal processing >Gabor feature-based face recognition using supervised locality preserving projection
【24h】

Gabor feature-based face recognition using supervised locality preserving projection

机译:使用监督的局部性保留投影的基于Gabor特征的人脸识别

获取原文
获取原文并翻译 | 示例

摘要

This paper introduces a novel Gabor-based supervised locality preserving projection (GSLPP) method for face recognition. Locality preserving projection (LPP) is a recently proposed method for unsupervised linear dimensionality reduction. LPP seeks to preserve the local structure which is usually more significant than the global structure preserved by principal component analysis (PCA) and linear discriminant analysis (LDA). In this paper, we investigate its extension, called supervised locality preserving projection (SLPP), using class labels of data points to enhance its discriminant power in their mapping into a low-dimensional space. The GSLPP method, which is robust to variations of illumination and facial expression, applies the SLPP to an augmented Gabor feature vector derived from the Gabor wavelet representation of face images. We performed comparative experiments of various face recognition schemes, including the proposed GSLPP method, PCA method, LDA method, LPP method, the combination of Gabor and PCA method (GPCA) and the combination of Gabor and LDA method (GLDA). Experimental results on AR database and CMU PIE database show superior of the novel GSLPP method.
机译:本文介绍了一种新颖的基于Gabor的监督式局部保留投影(GSLPP)的人脸识别方法。局部性保留投影(LPP)是最近提出的无监督线性降维方法。 LPP试图保留通常比通过主成分分析(PCA)和线性判别分析(LDA)保留的全局结构更重要的局部结构。在本文中,我们研究了它的扩展,称为监督局部性保留投影(SLPP),它使用数据点的类标签来增强其在映射到低维空间中的判别力。 GSLPP方法对照明和面部表情的变化具有鲁棒性,将SLPP应用于从面部图像的Gabor小波表示中得出的增强Gabor特征向量。我们进行了各种人脸识别方案的对比实验,包括建议的GSLPP方法,PCA方法,LDA方法,LPP方法,Gabor和PCA方法的组合(GPCA)以及Gabor和LDA方法的组合(GLDA)。在AR数据库和CMU PIE数据库上的实验结果表明,该新型GSLPP方法具有优越性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号